Abstract

In transient computational fluid dynamics (CFD) simulations, the continuity of the flow field is an essential prerequisite. However, continuous flows can be separated under certain conditions, such as the process from valve opening to reclosure. The current method often leaves a narrow gap to estimate the full closing status, which will introduce a deviation. To address this issue, a full closing numerical simulation method (FCNSM) is developed to solve the problem of simulation between discontinuous flow field (DFF) and continuous flow field (CFF). The matrix laboratory (matlab) program has been used to communicate fluent as a server session to call the files fluent and automatically execute text-based user interface (TUI) commands. The radial basis function (RBF) is used to construct the relationship between the variables of the flow field and the coordinates of mesh nodes, which can achieve the data transmission from a DFF to a CFF. Automatic stopping of transient calculations is achieved by passing variables among matlab program, scheme language, and user-defined functions (UDF) when a physical quantity reaches a set value. Based on this method, a transient simulation with a dynamic mesh of a 2-D model regarding a pressure relief valve (PRV) is performed to simulate the process of the valve from full closing to reclosure, the flow characteristics through the PRV are obtained using this method. This study makes it possible to use FCNSM for understanding dynamic characteristics from DFF to CFF.

References

1.
Leutwyler
,
Z.
, and
Dalton
,
C.
,
2008
, “
A CFD Study of the Flow Field, Resultant Force, and Aerodynamic Torque on a Symmetric Disk Butterfly Valve in a Compressible Fluid
,”
ASME J. Pressure Vessel Technol.
,
130
(
2
), pp.
1030
1036
.10.1115/1.2891929
2.
Anderson
,
J. D.
, Jr.
,
1995
,
Computational Fluid Dynamics: The Basics With Applications
,
Mc-Graw
,
New York
, pp.
3
93
.
3.
Song
,
X. G.
,
Wang
,
L.
, and
Park
,
Y. C.
,
2010
, “
Transient Analysis of a Spring-Loaded Pressure Safety Valve Using Computational Fluid Dynamics (CFD)
,”
ASME J. Pressure Vessel Technol.
,
132
(
5
), pp.
054501
054505
.10.1115/1.4001428
4.
Jo
,
J. C.
, and
Kang
,
D. G.
,
2010
, “
CFD Analysis of Thermally Stratified Flow and Conjugate Heat Transfer in a PWR Pressurizer Surgeline
,”
ASME J. Pressure Vessel Technol.
,
132
(
2
), p.
021301
.10.1115/1.4000727
5.
Martin
,
A.
, and
Bellet
,
S.
,
2003
, “
CFD-Tools Qualification for Thermal-Hydraulics Pressurized Thermal Shock Analysis
,”
ASME J. Pressure Vessel Technol.
,
125
(
4
), pp.
418
424
.10.1115/1.1616583
6.
Geronzi
,
L.
,
Gasparotti
,
E.
,
Capellini
,
K.
,
Cella
,
U.
,
Groth
,
C.
,
Porziani
,
S.
,
Chiappa
,
A.
,
Celi
,
S.
, and
Biancolini
,
M. E.
,
2021
, “
High Fidelity Fluid-Structure Interaction by Radial Basis Functions Mesh Adaption of Moving Walls: A Workflow Applied to an Aortic Valve
,”
J. Comput. Sci.
,
51
(
4
), p.
101327
.10.1016/j.jocs.2021.101327
7.
Dumont
,
K.
,
Stijnen
,
J. M. A.
,
Vierendeels
,
J.
,
van de Vosse
,
F. N.
, and
Verdonck
,
P. R.
,
2004
, “
Validation of a Fluid–Structure Interaction Model of a Heart Valve Using the Dynamic Mesh Method in FLUENT
,”
Comput. Methods Biomech. Biomed. Eng.
,
7
(
3
), pp.
139
146
.10.1080/10255840410001715222
8.
Yang
,
L.
,
Wang
,
Z.
,
Dempster
,
W.
,
Yu
,
X.
, and
Tu
,
S. T.
,
2017
, “
Experiments and Transient Simulation on Spring-Loaded Pressure Relief Valve Under High-Temperature and High-Pressure Steam Conditions
,”
J. Loss Prev. Process Ind.
,
45
, pp.
133
146
.10.1016/j.jlp.2016.11.019
9.
Dahl
,
S. K.
,
Vierendeels
,
J.
,
Degroote
,
J.
,
Annerel
,
S.
,
Hellevik
,
L. R.
, and
Skallerud
,
B.
,
2012
, “
FSI Simulation of Asymmetric Mitral Valve Dynamics During Diastolic Filling
,”
Comput. Methods Biomech. Biomed. Eng.
,
15
(
2
), pp.
121
130
.10.1080/10255842.2010.517200
10.
Sang
,
Y.
,
Wang
,
X. D.
, and
Sun
,
W. Q.
,
2020
, “
The Dynamic Characteristics of a Small Hydraulic Poppet Safety Relief Valve
,”
Int. J. Fluid Mach. Syst.
,
13
(
1
), pp.
233
240
.10.5293/IJFMS.2020.13.1.233
11.
Guo
,
X. X.
,
Huang
,
J. H.
, and
Quan
,
L.
,
2015
, “
Transient Flow Field Characteristic Analysis of Poppet Valve Based on Dynamic Mesh 6DOF Technique
,”
International Conference on Fluid Power and Mechatronics
,
IEEE
, Harbin, China, Aug. 5–7, pp.
928
933
.10.1109/FPM.2015.7337248
12.
Song
,
X. G.
,
Cui
,
L.
,
Cao
,
M. S.
,
Cao
,
W. P.
,
Park
,
Y. C.
, and
Dempster
,
W. M.
,
2014
, “
A CFD Analysis of the Dynamics of a Direct-Operated Safety Relief Valve Mounted on a Pressure Vessel
,”
Energy Convers. Manage.
,
81
, pp.
407
246
.10.1016/j.enconman.2014.02.021
13.
Amirante
,
R.
,
Catalano
,
L. A.
, and
Tamburrano
,
P.
,
2014
, “
The Importance of a Full 3D Fluid Dynamic Analysis to Evaluate the Flow Forces in a Hydraulic Directional Proportional Valve
,”
Eng. Computat.
,
31
(
5
), pp.
898
922
.10.1108/EC-09-2012-0221
14.
Finesso
,
R.
, and
Rundo
,
M.
,
2017
, “
Numerical and Experimental Investigation on a Conical Poppet Relief Valve With Flow Force Compensation
,”
Int. J. Fluid Power
,
18
(
2
), pp.
111
122
.10.1080/14399776.2017.1296740
15.
Valdes
,
J. R.
,
Miana
,
M. J.
, and
Puetz
,
T.
,
2003
, “
CFD Dynamic Simulation of a Valve Performance Using UDF's and the Deforming Mesh Model
,”
First European Automotive CFD(Computational Fluid Dynamics) Conference
,
Instituto Tecnologico de Aragon Zaragoza
, Bingen, Germany, June 25–26
.
16.
Xiong
,
S.
, and
Chen
,
J.
,
2012
, “
Numerical Simulation Based on Cfd for the Movement Field of the Hydraulic Poppet Valve
,”
Adv. Mater. Res.
,
466–467
, pp.
1266
1270
.10.4028/www.scientific.net/AMR.466-467.1266
17.
Mi
,
X.
,
Li
,
Q.
,
Feng
,
W.
, and
Zhao
,
X.
,
2017
, “
Flow Field Simulation of Reciprocating Compressor Based on Dynamic Mesh Technology
,” IEEE 21st International Conference on Computer Supported Cooperative Work in Design (
CSCWD
),
IEEE
, Wellington, New Zealand, Apr. 26–28, pp. 567–572.10.1109/CSCWD.2017.8066756
18.
Qian
,
J. Y.
,
Gao
,
Z. X.
,
Wang
,
J. K.
, and
Jin
,
Z. J.
,
2017
, “
Experimental and Numerical Analysis of Spring Stiffness on Flow and Valve Core Movement in Pilot Control Globe Valve
,”
Int. J. Hydrogen Energy
,
42
(
27
), pp.
17192
17201
.10.1016/j.ijhydene.2017.05.190
19.
Kim
,
N. S.
, and
Jeong
,
Y. H.
,
2021
, “
An Investigation of Pressure Build-Up Effects Due to Check Valve's Closing Characteristics Using Dynamic Mesh Techniques of CFD
,”
Ann. Nucl. Energy
,
152
, p.
107996
.10.1016/j.anucene.2020.107996
20.
Beune
,
A.
,
Kuerten
,
J.
, and
Heumen
,
M.
,
2012
, “
CFD Analysis With Fluid-Structure Interaction of Opening High-Pressure Safety Valves
,”
Comput. Fluids
,
64
, pp.
108
116
.10.1016/j.compfluid.2012.05.010
21.
Audet, C., Denni, J., Moore, D., Booker, A., and Frank, P.,
2000
, “
A Surrogate-Model-Based Method for Constrained Optimization
,”
Eighth Symposium on Multidisciplinary Analysis and Optimization
,
AudetCharles
, Long Beach, CA, Sept. 6–8, p.
4891
.10.2514/6.2000-4891
22.
Er
,
M. J.
,
Wu
,
S. Q.
, and
Lu
,
J. W.
,
2002
, “
Face Recognition With Radial Basis Function (RBF) Neural Networks
,”
IEEE Trans. Neural Networks
, 13(3), pp.
697
710
.https://tarjomefa.com/wpcontent/uploads/2015/06/3128-engilish.pdf
23.
Seshagiri
,
S.
, and
Khalil
,
H. K.
,
2000
, “
Output Feedback Control of Nonlinear Systems Using RBF Neural Networks
,”
IEEE Trans. Neural Networks
,
11
(
1
), pp.
69
79
.10.1109/72.822511
24.
Chen
,
S.
,
Cowan
,
C. F. N.
, and
Grant
,
P. M.
,
1991
, “
Orthogonal Least Squares Learning Algorithm for Radial Basis Function Networks
,”
IEEE Trans. Neural Networks
,
2
(
2
), pp.
302
309
.10.1109/72.80341
25.
Jang
,
J. S. R.
, and
Sun
,
C. T.
,
1993
, “
Functional Equivalence Between Radial Basis Function Networks and Fuzzy Inference Systems
,”
IEEE Trans. Neural Networks
,
4
(
1
), pp.
156
159
.10.1109/72.182710
26.
Park
,
J.
, and
Sandberg
,
I.
,
1991
, “
Universal Approximation Using Radial-Basis-Function Networks
,”
Neural Comput.
,
3
(
2
), pp.
246
257
.10.1162/neco.1991.3.2.246
27.
Scholkopf
,
B.
,
Sung
,
K. K.
,
Burges
,
C. J. C.
,
Girosi
,
F.
,
Niyogi
,
P.
, and
Poggio
,
T.
,
2002
, “
Comparing Support Vector Machines With Gaussian Kernels to Radial Basis Function Classifiers
,”
IEEE Trans. Signal Process.
,
45
(
11
), pp.
2758
2765
.10.1109/78.650102
28.
Zheng
,
F.
,
Zong
,
C.
,
Zhang
,
C.
,
Song
,
X.
,
Qu
,
F.
, and
Dempster
,
W.
,
2021
, “
Dynamic Instability Analysis of a Spring-Loaded Pressure Safety Valve Connected to a Pipe by Using Computational Fluid Dynamics Methods
,”
ASME J. Pressure Vessel Technol.
,
143
(
4
), p.
041403
.10.1115/1.4049697
29.
Chen
,
S.
,
Billings
,
S. A.
, and
Grant
,
P. M.
,
1992
, “
Recursive Hybrid Algorithm for Non-Linear System Identification Using Radial Basis Function Networks
,”
Int. J. Control
,
55
(
5
), pp.
1051
1070
.10.1080/00207179208934272
30.
ANSYS
,
2016
,
ANSYS 19.2 Help
,
ANSYS
,
Canonsburg, PA
.
You do not currently have access to this content.