Abstract

Superheater tubes are critical boiler components that operate at relatively higher temperatures and pressure. Amongst the primary concerns for these tubes is the deposition of ash particles on the tube surface, leading to the reduced thickness of the tube due to material corrosion, consequently causing early creep failure of the component. In this research, a novel tube design has been proposed which resembles a teardrop or ogive shape to reduce the drag and concurrently improve the creep life of the superheater tubes. To administer the practicality of novel tubes, metal additive manufacturing (AM), for instance, laser-powder bed fusion (L-PBF), has been proposed. These unconventional designs were assessed and compared with the baseline circular tube design for mechanical design requirements (hoop stress and creep life) and the particle and flue gas flow characteristics around the differently shaped tubes. A thermomechanical finite element (FE) analysis was performed for hoop stress calculations. This study also emphasizes on effect of circumferential thermal variation on hoop stress distribution in tubes. Therefore, a detailed two-dimensional (2D) thermal simulation has been performed to report the circumferential thermal variation on the tube. A computational fluid dynamics (CFD) analysis coupled with particle tracing was performed for gas flow visualization and particle tracing around the proposed shapes and baseline circular-shaped tube design. The Schlieren optic setup was built and leveraged for qualitative validation of the proposed design. The complete design methodology established in the paper shows teardrop-shaped tubes better in terms of drag and creep life in contrast to the circular-shaped tube.

References

1.
U.S. Energy Information Administration,
2021
, “
Annual Energy Outlook 2021
,” U.S. Energy Information Administration, Office of Energy Analysis, U.S. Department of Energy, Washington, DC, accessed Nov. 6, 2021, https://www.eia.gov/outlooks/aeo/
2.
Asgaryan
,
M.
,
2013
, “
Prediction of the Remaining Service Life of Superheater and Reheater Tubes in Coal-Biomass Fired Power Plants
,” Ph.D. thesis,
Cranfield University
,
Cranfield, UK
.
3.
Yang
,
X.
,
2016
, “
Development of Ash Deposition Prediction Models Through the CFD Methods and the Ash Deposition Indice
,” Ph.D. thesis,
University of Sheffield
, Sheffield, UK.
4.
Frandsen
,
F. J.
,
2005
, “
Utilizing Biomass and Waste for Power production—A Decade of Contributing to the Understanding, Interpretation and Analysis of Deposits and Corrosion Products
,”
Fuel
,
84
(
10
), pp.
1277
1294
.10.1016/j.fuel.2004.08.026
5.
Simms
,
N.
,
Seraffon
,
M.
,
Pidcock
,
A.
, and
Davis
,
C.
,
2017
, “
Assessment of Coating Performance on Waterwalls and Superheaters in a Pulverised Fuel-Fired Power Station
,”
Oxid. Met.
,
88
(
1–2
), pp.
165
177
.10.1007/s11085-016-9680-6
6.
Vakkilainen
,
E. K.
,
2017
, “
Boiler Mechanical Design
,”
Steam Generation From Biomass
,
E. K.
Vakkilainen
, ed.,
Elsevier
, Lappeenranta, Finland, pp.
167
179
.
7.
Wright
,
I. G.
, and
Kung
,
S. C.
,
2018
, “
Possible Scenarios for the Causes of Accelerated Fireside Corrosion of Superheater Tubes in Coal-Fired Boilers
,”
Mater. High Temp.
,
35
(
4
), pp.
316
326
.10.1080/09603409.2017.1334351
8.
Hendry
,
A.
, and
Lees
,
D. J.
,
1980
, “
Corrosion of Austenitic Steels in Molten Sulphate Deposits
,”
Corros. Sci.
,
20
(
3
), pp.
383
404
.10.1016/0010-938X(80)90007-4
9.
Reid
,
W. T.
,
1971
,
External Corrosion and Deposits
,
American Elsevier Publishing Company
,
New York
.
10.
Kleinhans
,
U.
,
Wieland
,
C.
,
Frandsen
,
F. J.
, and
Spliethoff
,
H.
,
2018
, “
Ash Formation and Deposition in Coal and Biomass Fired Combustion Systems: Progress and Challenges in the Field of Ash Particle Sticking and Rebound Behavior
,”
Prog. Energy Combust. Sci.
,
68
, pp.
65
168
.10.1016/j.pecs.2018.02.001
11.
Zhang
,
Y.
,
Li
,
Q.
, and
Zhou
,
H.
,
2016
, “
Theoretical Foundation and Basic Properties of Thermal Radiation
,”
Theory and Calculation of Heat Transfer in Furnaces
,
Elsevier
, Beijing, China, pp.
1
43
.
12.
Vassilev
,
S. V.
,
Kitano
,
K.
,
Takeda
,
S.
, and
Tsurue
,
T.
,
1995
, “
Influence of Mineral and Chemical Composition of Coal Ashes on Their Fusibility
,”
Fuel Process. Technol.
,
45
(
1
), pp.
27
51
.10.1016/0378-3820(95)00032-3
13.
Holubcik
,
M.
,
Jandacka
,
J.
, and
Malcho
,
M.
,
2015
, “
Ash Melting Temperature Prediction From Chemical Composition of Biomass Ash
,”
Holistic Approach Environ.
,
5
(
3
), pp.
119
125
.https://www.proquest.com/docview/1721566641/fulltextPDF/5561DFCAB6664625PQ/1?accountid=14766
14.
Kim
,
J. H.
,
Kim
,
G. B.
, and
Jeon
,
C. H.
,
2017
, “
Prediction of Correlation Between Ash Fusion Temperature of ASTM and Thermo-Mechanical Analysis
,”
Appl. Therm. Eng.
,
125
, pp.
1291
1299
.10.1016/j.applthermaleng.2017.07.114
15.
Ai
,
W.
, and
Kuhlman
,
J. M.
,
2011
, “
Simulation of Coal Ash Particle Deposition Experiments
,”
Energy Fuels
,
25
(
2
), pp.
708
718
.10.1021/ef101294f
16.
Zheng
,
Z.
,
Yang
,
W.
,
Cai
,
Y.
,
Xu
,
M.
,
Boon
,
S. K.
, and
Subbaiah
,
P.
,
2017
, “
Numerical Investigation on Ash Deposition on the Surface of Tube Bundle
,”
Energy Procedia
,
143
, pp.
336
341
.10.1016/j.egypro.2017.12.693
17.
Yongtie
,
C.
,
Wenming
,
Y.
,
Zhimin
,
Z.
,
Mingchen
,
X.
,
Boon
,
S. K.
, and
Subbaiah
,
P.
,
2017
, “
Modelling of Ash Deposition in Biomass Boilers: A Review
,”
Energy Procedia
,
143
, pp.
623
628
.10.1016/j.egypro.2017.12.737
18.
Chapela
,
S.
,
Porteiro
,
J.
,
Gómez
,
M. A.
,
Patiño
,
D.
, and
Míguez
,
J. L.
,
2018
, “
Comprehensive CFD Modeling of the Ash Deposition in a Biomass Packed Bed Burner
,”
Fuel
,
234
, pp.
1099
1122
.10.1016/j.fuel.2018.07.121
19.
Riccio
,
C.
,
Simms
,
N. J.
, and
Oakey
,
J. E.
,
2019
, “
Deposition Prediction in a Pilot Scale Pulverized Fuel-Fired Combustor
,”
Fuel
,
253
, pp.
1204
1213
.10.1016/j.fuel.2019.05.077
20.
Gibson
,
L. M.
,
Shadle
,
L. J.
, and
Pisupati
,
S. V.
,
2014
, “
Determination of Sticking Probability Based on the Critical Velocity Derived From a Visco-Elastoplastic Model to Characterize Ash Deposition in an Entrained Flow Gasifier
,”
Energy Fuels
,
28
(
8
), pp.
5307
5317
.10.1021/ef5008616
21.
Haugen
,
N. E. L.
, and
Kragset
,
S.
,
2010
, “
Particle Impaction on a Cylinder in a Crossflow as Function of Stokes and Reynolds Numbers
,”
J. Fluid Mech.
,
661
, pp.
239
261
.10.1017/S0022112010002946
22.
Hare
,
N.
,
Rasul
,
M. G.
, and
Moazzem
,
S.
,
2010
, “
A Review on Boiler Deposition/Foulage Prevention and Removal Techniques for Power Plant
,”
EE'10: Proceedings of the Fifth IASME/WSEAS International Conference on Energy & Environment
, Cambridge, UK, Feb. 23–25,
World Scientific and Engineering Academy and Society (WSEAS)
, pp.
217
222
.https://www.researchgate.net/publication/229034998_A_review_on_boiler_depositionfoulage_prevention_and_removal_techniques_for_power_plant
23.
Zbogar
,
A.
,
Frandsen
,
F.
,
Jensen
,
P. A.
, and
Glarborg
,
P.
,
2009
, “
Shedding of Ash Deposits
,”
Prog. Energy Combust. Sci.
,
35
(
1
), pp.
31
56
.10.1016/j.pecs.2008.07.001
24.
Bouris
,
D.
,
Papadakis
,
G.
,
Bergeles
,
G.
,
2001
, “
Numerical Evaluation of Alternate Tube Configurations for Particle Deposition Rate Reduction in Heat Exchanger Tube Bundles
,”
Int. J. Heat Fluid Flow
,
22
(
5
), pp.
525
536
.10.1016/S0142-727X(01)00110-2
25.
Bouris
,
D.
,
Konstantinidis
,
E.
,
Balabani
,
S.
,
Castiglia
,
D.
, and
Bergeles
,
G.
,
2005
, “
Design of a Novel, Intensified Heat Exchanger for Reduced Fouling Rates
,”
Int. J. Heat Mass Transfer
,
48
(
18
), pp.
3817
3832
.10.1016/j.ijheatmasstransfer.2005.03.026
26.
Tang
,
S. Z.
,
Li
,
M. J.
,
Wang
,
F. L.
, and
Liu
,
Z. B.
,
2019
, “
Fouling and Thermal-Hydraulic Characteristics of Aligned Elliptical Tube and Honeycomb Circular Tube in Flue Gas Heat Exchangers
,”
Fuel
,
251
, pp.
316
327
.10.1016/j.fuel.2019.04.045
27.
Li
,
J.
,
Du
,
W.
, and
Cheng
,
L.
,
2017
, “
Numerical Simulation and Experiment of Gas-Solid Two Phase Flow and Ash Deposition on a Novel Heat Transfer Surface
,”
Appl. Therm. Eng.
,
113
, pp.
1033
1046
.10.1016/j.applthermaleng.2016.10.198
28.
Harada
,
K.
, and
Yamakawa
,
T.
,
2013
, U.S. Patent No. 8,490,452 B2.
29.
Zhang
,
L.
,
Xie
,
S.
,
Liang
,
Z.
,
Zhang
,
J.
,
Wang
,
Y.
,
Chen
,
W.
, and
Kong
,
C.
,
2019
, “
Numerical Investigation of Flow and Heat Transfer in Enhanced Tube With Slot Dimples
,”
Heat Mass Transfer/Waerme- Stoffuebertrag.
,
55
(
12
), pp.
3697
3709
.10.1007/s00231-019-02685-z
30.
Zhang
,
H.
,
Albert
,
S.
,
Scotia
,
L.
, and
Taylor
,
F.
,
2012
, U.S. Patent No. 8,281,564 B2.
31.
Chudnovsky
,
Y.
, and
Kozlov
,
A.
,
2006
, “
Development and Field Trial of Dimpled-Tube Technology for Chemical Industry Process Heaters
,” U.S. Department of Energy, Office of Scientific and Technical Information, Des Plaines, IL.10.2172/894062
32.
Kamath
,
C.
,
El-Dasher
,
B.
,
Gallegos
,
G. F.
,
King
,
W. E.
, and
Sisto
,
A.
,
2013
, “
Density of Additively-Manufactured, 316 L SS Parts Using Laser Powder-Bed Fusion at Powers Up to 400W
,” U.S. Department of Energy, Office of Scientific and Technical Information, Livermore, CA.10.2172/1116929
33.
Li
,
M.
,
2020
, “
Progress Report on the Assessment of the Material Performance for TCR Applications
,” Nuclear Science and Engineering Division, ANL, Argonne, IL, Report No. ANL/NSE-20/12.
34.
Wang
,
Y. M.
,
Voisin
,
T.
,
McKeown
,
J. T.
,
Ye
,
J.
,
Calta
,
N. P.
,
Li
,
Z.
,
Zeng
,
Z.
,
2018
, “
Additively Manufactured Hierarchical Stainless Steels With High Strength and Ductility
,”
Nat. Mater.
,
17
(
1
), pp.
63
70
.10.1038/nmat5021
35.
Baxter
,
L. L.
,
1993
, “
Ash Deposition During Biomass and Coal Combustion: A Mechanistic Approach
,”
Biomass Bioenergy
,
4
(
2
), pp.
85
102
.10.1016/0961-9534(93)90031-X
36.
Kaneko
,
S.
,
Nakamura
,
T.
,
Inada
,
F.
, and
Kato
,
M.
,
2008
,
Flow-Induced Vibrations: Classifications and Lessons From Practical Experiences
, 1st ed.,
Elsevier
,
Oxford, UK
.
37.
Nguyen
,
V. P.
,
Lee
,
S.
,
Choi
,
W.
, and
Choi
,
S. T.
,
2019
, “
Effect of Creep Lifetime on Geometric Optimization of Boiler Tubes for Thermal Power Plants
,”
Mater. High Temp.
,
36
(
5
), pp.
379
387
.10.1080/09603409.2019.1585060
38.
Zbogar
,
A.
,
Frandsen
,
F. J.
,
Jensen
,
P. A.
, and
Glarborg
,
P.
,
2005
, “
Heat Transfer in Ash Deposits: A Modelling Tool-Box
,”
Prog. Energy Combust. Sci.
,
31
(
5–6
), pp.
371
421
.10.1016/j.pecs.2005.08.002
39.
Zhou
,
H.
,
Jensen
,
P. A.
, and
Frandsen
,
F. J.
,
2007
, “
Dynamic Mechanistic Model of Superheater Deposit Growth and Shedding in a Biomass Fired Grate Boiler
,”
Fuel
,
86
(
10–11
), pp.
1519
1533
.10.1016/j.fuel.2006.10.026
40.
Trojan
,
M.
, and
Taler
,
J.
,
2013
, “
Effect of Scale Deposits on the Internal Surfaces of the Tubes on the Superheater Operation
,”
Arch. Thermodyn.
,
34
(
4
), pp.
73
91
.10.2478/aoter-2013-0030
41.
Cengel
,
Y. A.
,
2007
,
Heat and Mass Transfer: A Practical Approach
, 3rd ed.,
McGraw-Hill
,
New York
.
42.
Mazumdar
,
A.
,
2011
, “
Principles and Techniques of Schlieren Imaging Systems
,” Department of Computer Science, Columbia University, New York, Report No. CUCS-016-13.
43.
Schmidt
,
B.
,
2015
, “
Schlieren Visualization Ae 104b
,” California Institute of Technology, Pasadena, CA, accessed June 11, 2022, https://shepherd.caltech.edu/T5/Ae104/Ae104b_handout2015.pdf
44.
Thielicke
,
W.
, and
Sonntag
,
R.
,
2021
, “
Particle Image Velocimetry for MATLAB: Accuracy and Enhanced Algorithms in PIVlab
,”
J. Open Res. Software
,
9
(
1
), pp.
12
14
.10.5334/jors.334
45.
Gena
,
A. W.
,
Voelker
,
C.
, and
Settles
,
G. S.
,
2020
, “
Qualitative and Quantitative Schlieren Optical Measurement of the Human Thermal Plume
,”
Indoor Air
,
30
(
4
), pp.
757
766
. 10.1111/ina.12674
46.
Lai
,
G. Y.
,
2007
,
High Temperature Corrosion and Material Applications
,
ASM International
, Materials Park,
OH
.
47.
Kapayeva
,
S. D.
,
Bergander
,
M. J.
,
Vakhguelt
,
A.
, and
Khairaliyev
,
S. I.
,
2017
, “
Remaining Life Assessment for Boiler Tubes Affected by Combined Effect of Wall Thinning and Overheating
,”
J. Vibroeng.
,
19
(
8
), pp.
5892
5907
.10.21595/jve.2017.18219
You do not currently have access to this content.