Abstract

The present research investigates the effect of employing large displacement in finite element modeling on the generated shakedown (SD) boundaries of thin-walled 90-deg scheduled pipe bends. A recently developed methodology termed: shakedown limit—plastic work dissipation (SDLimitPWD) method generates the SD boundaries via employing the large displacement in the finite element (FE) simulations. Additionally, a well-established direct noncyclic technique termed: shakedown direct noncyclic technique (SD_DNT) generates the SD boundaries via employing the small displacement formulation in the FE simulations. Comparing the SD boundaries generated via both methods illustrated a marked increase in the generated SD domains due to employing large displacement.

References

1.
ASME
,
2018
,
Welded and Seamless Wrought Steel Pipe: Standard B36.10M
,
ASME
,
New York
.
2.
GrüNing
,
M.
,
1926
,
Die Tragfähigkeit Statisch Unbestimmter Tragwerke Aus Stahl Bei Beliebig Häufig Wiederholter Belastung
,
Springer
,
Berlin
.
3.
Bleich
,
H.
,
1932
, “
Über Die Bemessung Statisch Unbestimmter Stahltragwerke
,”
Bauingenieur
,
13
, pp.
261
267
.
4.
Melan
,
E.
,
1936
, “
Theorie Statisch Unbestimmter Systeme Aus Ideal Plastischem Baustoff
,”
Sitzber. Akad. Wiss. Wien II a
,
145
, pp.
195
218
.
5.
Chen
,
H.
, and
Ponter
,
A. R. S.
,
2006
, “
Linear Matching Method on the Evaluation of Plastic and Creep Behaviours for Bodies Subjected to Cyclic Thermal and Mechanical Loading
,”
Int. J. Numer. Methods Eng
,.,
68
(
1
), pp.
13
32
.10.1002/nme.1693
6.
Donald
,
M.
, and
Boyle
,
J. T.
,
2000
, “
Elastic Compensation Method for Limit and Shakedown Analysis: A Review
,”
J. Strain Anal. Eng. Des.
,
35
(
3
), pp.
171
188
.10.1243/0309324001514332
7.
Zheng
,
X. T.
,
Ma
,
Z. Y.
,
Chen
,
H. F.
, and
Shen
,
J.
,
2019
, “
A Novel Fatigue Evaluation Approach With Direct Steady Cycle Analysis (DSCA) Based on the Linear Matching Method (LMM)
,”
Key Eng. Mater.
,
795
, pp.
383
388
.10.4028/www.scientific.net/KEM.795.383
8.
Muscat
,
M.
,
Hamilton
,
R.
, and
Boyle
,
J.
,
2002
, “
Shakedown Analysis for Complex Loading Using Superposition
,”
J. Strain Anal. Eng. Des.
,
37
(
5
), pp.
399
412
.10.1243/030932402760203865
9.
Abdalla
,
H. F.
,
Megahed
,
M. M.
, and
Younan
,
M. Y. A.
,
2006
, “
Determination of Shakedown Limit Load for a 90-Degree Pipe Bend Using a Simplified Technique
,”
ASME J. Pressure Vessel Technol.
,
128
(
4
), pp.
618
624
.10.1115/1.2349575
10.
Abdalla
,
H. F.
,
Megahed
,
M. M.
, and
Younan
,
M. Y. A.
,
2007
, “
A Simplified Technique for Shakedown Limit Load Determination
,”
Nucl. Eng. Des.
,
237
(
12–13
), pp.
1231
1240
.10.1016/j.nucengdes.2006.09.033
11.
Vermaak
,
N.
,
Valdevit
,
L.
,
Evans
,
A. G.
,
Zok
,
F. W.
, and
Mcmeeking
,
R. M.
,
2011
, “
Implications of Shakedown for Design of Actively Cooled Thermostructural Panels
,”
J. Mech. Mater. Struct.
,
6
(
9–10
), pp.
1313
1327
.10.2140/jomms.2011.6.1313
12.
Oda
,
A. A.
,
Megahed
,
M. M.
, and
Abdalla
,
H. F.
,
2015
, “
Effect of Local Wall Thinning on Shakedown Regimes of Pressurized Elbows Subjected to Cyclic in-Plane and Out-of-Plane Bending
,”
Int. J. Press. Vessel. Pip.
,
134
, pp.
11
24
.10.1016/j.ijpvp.2015.08.003
13.
Vlaicu
,
D.
,
2012
, “
Non-Cyclic Methods for Shakedown Analysis of Cracked Structures
,”
ASME
Paper No. PVP2012-78567.10.1115/PVP2012-78567
14.
Oh
,
C. S.
,
Kim
,
Y. J.
, and
Yoon
,
K. B.
,
2010
, “
Elastic-Plastic Behaviours of Pressurised Tubes Under Cyclic Thermal Stresses With Temperature Gradients
,”
Int. J. Press. Vessel. Pip.
,
87
(
5
), pp.
245
253
.10.1016/j.ijpvp.2010.03.002
15.
Hafiz
,
Y. A. F.
,
Younan
,
M. Y. A.
, and
Abdalla
,
H. F.
,
2015
, “
A Proposal for a Simplified Assessment Procedure to API-579 Standard
,”
ASME J. Pressure Vessel Technol.
, 137(
3
), p. 031007
.10.1115/1.4028425
16.
Elsaadany
,
M. S.
,
Younan
,
M. Y. A.
, and
Abdalla
,
H. F.
,
2014
, “
Determination of Shakedown Boundary and Failure-Assessment-Diagrams of Cracked Pipe Bends
,”
ASME J. Pressure Vessel Technol.
, 136(
1
), p.
011209
.10.1115/1.4025614
17.
Korba
,
A. G.
,
Megahed
,
M. M.
,
Abdalla
,
H. F.
, and
Nassar
,
M. M.
,
2013
, “
Shakedown Analysis of 90-Degree Mitred Pipe Bends
,”
Eur. J. Mech. A/Solids
,
40
, pp.
158
165
.10.1016/j.euromechsol.2013.01.006
18.
Abdalla
,
H. F.
,
2014
, “
Shakedown Boundary Determination of a 90° Back-to-Back Pipe Bend Subjected to Steady Internal Pressures and Cyclic in-Plane Bending Moments
,”
Int. J. Pressure Vessel. Pip.
,
116
(
1
), pp.
1
9
.10.1016/j.ijpvp.2014.01.001
19.
Cho
,
N. K.
, and
Chen
,
H.
,
2018
, “
Shakedown, Ratchet, and Limit Analyses of 90° Back-to-Back Pipe Bends Under Cyclic in-Plane Opening Bending and Steady Internal Pressure
,”
Eur. J. Mech. A/Solids
,
67
, pp.
231
242
.10.1016/j.euromechsol.2017.10.002
20.
Abdalla
,
H. F.
,
2019
, “
Effect of Wall Thinning on the Shakedown Interaction Diagrams of 90-Degree Back-to-Back Bends Subjected to Simultaneous Steady Internal Pressures and Cyclic in Plane Bending Moments
,”
Thin-Walled Struct.
,
144
, p.
106228
.10.1016/j.tws.2019.106228
21.
Spiliopoulos
,
K. V.
, and
Panagiotou
,
K. D.
,
2014
, “
A Residual Stress Decomposition Based Method for the Shakedown Analysis of Structures
,”
Comput. Methods Appl. Mech. Eng.
,
276
, pp.
410
430
.10.1016/j.cma.2014.03.019
22.
Spiliopoulos
,
K. V.
, and
Panagiotou
,
K. D.
,
2017
, “
An Enhanced Numerical Procedure for the Shakedown Analysis in Multidimensional Loading Domains
,”
Comput. Struct.
,
193
, pp.
155
171
.10.1016/j.compstruc.2017.08.008
23.
Vollrath
,
B.
, and
Hübel
,
H.
,
2018
, “
Determination of Post-Shakedown Quantities of a Pipe Bend Via the Simplified Theory of Plastic Zones Compared With Load History Dependent Incremental Analysis
,”
AIP Conference Proceedings, American Institute of Physics Inc
., p.
120004
.10.1063/1.5019119
24.
Li
,
H.
,
Wood
,
J.
,
McCormack
,
R.
, and
Hamilton
,
R.
,
2013
, “
Numerical Simulation of Ratcheting and Fatigue Behaviour of Mitred Pipe Bends Under in-Plane Bending and Internal Pressure
,”
Int. J. Press. Vessel. Pip.
,
101
, pp.
154
160
.10.1016/j.ijpvp.2012.11.003
25.
Kulkarni
,
S. C.
,
Desai
,
Y. M.
,
Kant
,
T.
,
Reddy
,
G. R.
,
Prasad
,
P.
,
Vaze
,
K. K.
, and
Gupta
,
C.
,
2004
, “
Uniaxial and Biaxial Ratchetting in Piping Materials-Experiments and Analysis
,”
Int. J. Press. Vessel. Pip.
,
81
(
7
), pp.
609
617
.10.1016/j.ijpvp.2004.04.001
26.
Sumesh
,
S.
,
Veerappan
,
A. R.
, and
Shanmugam
,
S.
,
2016
, “
Assessment of Plastic Loads of Critical Throughwall Circumferentially Cracked Pipe Bends With Structural Distortions Under in-Plane Bending
,”
Thin-Walled Struct.
,
104
, pp.
144
151
.10.1016/j.tws.2016.03.009
27.
Azadeh
,
M.
, and
Taheri
,
F.
,
2016
, “
On the Response of Dented Stainless-Steel Pipes Subject to Cyclic Bending Moments and Its Prediction
,”
Thin-Walled Struct.
,
99
, pp.
12
20
.10.1016/j.tws.2015.10.017
28.
Christo Michael
,
T.
,
Veerappan
,
A. R.
, and
Shanmugam
,
S.
,
2018
, “
Suitability of Assumed Cross Sections to Include Ovality in the Limit Analysis of Pipe Bends Under in-Plane Closing Moment and Internal Pressure
,”
Thin-Walled Struct.
,
122
, pp.
545
553
.10.1016/j.tws.2017.10.040
29.
Foroutan
,
M.
,
Ahmadzadeh
,
G. R.
, and
Varvani-Farahani
,
A.
,
2018
, “
Axial and Hoop Ratcheting Assessment in Pressurized Steel Elbow Pipes Subjected to Bending Cycles
,”
Thin-Walled Struct.
,
123
, pp.
317
323
.10.1016/j.tws.2017.11.021
30.
Liu
,
C.
,
Yu
,
D.
,
Akram
,
W.
,
Cai
,
Y.
, and
Chen
,
X.
,
2019
, “
Ratcheting Behavior of Pressurized Elbow Pipe at Intrados Under Different Loading Paths
,”
Thin-Walled Struct.
,
138
, pp.
293
301
.10.1016/j.tws.2019.02.013
31.
Abdalla
,
H. F.
,
2021
, “
A Novel Methodology for Determining the Elastic Shakedown Limit Loads Via Computing the Plastic Work Dissipation
,”
Int. J. Press. Vessel. Pip.
,
191
, p.
104327
.10.1016/j.ijpvp.2021.104327
32.
ASME
,
2007
,
Boiler Pressure Vessel Code: Nuclear Power Plant Components
,
ASME
,
New York
.
33.
Systèmes
,
S.-D.
,
2017
,
ABAQUS/Standard Version 6.17 User Documentation
,
Simulia
,
Providence, RI
.
You do not currently have access to this content.