Abstract

Pressure manifold is prone to failure caused by cuttings and gravels included in the underground natural gas and shale gas. In particular, the tee tubes are one of the most easily failed components. In order to study the erosion wear mechanism of tee tubes. T-tube, Y-tube, and y-tube pressure manifolds are systematically studied. The results show that structure and gas inlet affect the tube's field distribution and erosion. After gas shunts (separated flow), high-pressure areas are concentrated on junction and downstream, while high-pressure areas are concentrated downstream after the gas conflates (sink flow). Erosion area and particle trajectory of the tee tubes under the effect of shunting and confluence are analyzed. Overall erosion of Y-tube is the most severe. Taking erosion wear degree into account, y-tube is a better choice.

References

1.
Lian
,
Z.
,
Chen
,
X.
,
Lin
,
T.
,
Ming
,
X.
, and
Zheng
,
J.
,
2014
, “
Study on Erosion Mechanism of Bending Joint in Blooey Line
,”
J. Southwest Pet. Univ. (Sci. Technol. Ed.)
,
36
(
1
), pp.
150
156
.10.11885/j.issn.1674-5086.2013.08.11.03
2.
Zhang
,
J.
, and
Hu
,
Y.
,
2020
, “
Sealing Performance and Mechanical Behavior of PEMFCs Sealing System Based on Thermodynamic Coupling
,”
Int. J. Hydrogen Energy
,
45
(
43
), pp.
23480
23489
.10.1016/j.ijhydene.2020.06.167
3.
El-Behery
,
S. M.
,
Hamed
,
M. H.
,
Ibrahim
,
K. A.
, and
El-Kadi
,
M. A.
,
2010
, “
CFD Evaluation of Solid Particles Erosion in Curved Ducts
,”
ASME J. Fluids Eng.
,
132
(
7
), p.
071303
.10.1115/1.4001968
4.
Duarte
,
C. A. R.
,
De Souza
,
F. J.
, and
Dos Santos
,
V. F.
,
2015
, “
Numerical Investigation of Mass Loading Effects on Elbow Erosion
,”
Powder Technol.
,
283
, pp.
593
606
.10.1016/j.powtec.2015.06.021
5.
Zhu
,
H. J.
,
Feng
,
G.
, and
Wang
,
Q. J.
,
2014
, “
Numerical Investigation of Temperature Distribution in an Eroded Bend Pipe and Prediction of Erosion Reduced Thickness
,”
Sci. World J.
, 2(24), p.
435679
. 10.1155/2014/435679
6.
Peng
,
W. S.
, and
Cao
,
X. W.
,
2016
, “
Numerical Prediction of Erosion Distributions and Solid Particle Trajectories in Elbows for Gas-Solid Flow
,”
J. Natural Gas Sci. Eng.
,
30
, pp.
455
470
.10.1016/j.jngse.2016.02.008
7.
Zeng
,
D. Z.
,
Zhang
,
E.
,
Ding
,
Y. Y.
,
Yi
,
Y.
,
Xian
,
Q.
,
Yao
,
G.
,
Zhu
,
H.
, and
Shi
,
T.
,
2018
, “
Investigation of Erosion Behaviors of Sulfur-Particle-Laden Gas Flow in an Elbow Via a CFD-DEM Coupling Method
,”
Powder Technol.
,
329
, pp.
115
128
.10.1016/j.powtec.2018.01.056
8.
Singh
,
J.
,
Kumar
,
S.
,
Singh
,
J. P.
,
Kumar
,
P.
, and
Mohapatra
,
S. K.
,
2019
, “
CFD Modeling of Erosion Wear in Pipe Bend for the Flow of Bottom Ash Suspension
,”
Part. Sci. Technol.
,
37
(
3
), pp.
275
285
.10.1080/02726351.2017.1364816
9.
Zhang
,
J. X.
,
Kang
,
J.
,
Fan
,
J. C.
, and
Gao
,
J.
,
2016
, “
Study on Erosion Wear of Fracturing Pipeline Under the Action of Multiphase Flow in Oil & Gas Industry
,”
J. Natural Gas Sci. Eng.
,
32
, pp.
334
346
.10.1016/j.jngse.2016.04.056
10.
Pouraria
,
H.
,
Seo
,
J. K.
, and
Paik
,
J. K.
,
2017
, “
Numerical Study of Erosion in Critical Components of Subsea Pipeline: Tees vs Bends
,”
Ships Offshore Struct.
,
12
(
2
), pp.
233
243
.10.1080/17445302.2015.1131889
11.
Wang
,
Z. Y.
,
Liu
,
B.
,
Yang
,
Y.
,
Han
,
N.
, ,
Zeng
,
G.
,
Ren
,
A.
, and
Zhang
,
T.
,
2016
, “
Experimental and Numerical Studies on Corrosion Failure of a Three-Limb Pipe in Natural Gas Field
,”
Eng. Failure Anal.
,
62
, pp.
21
38
.10.1016/j.engfailanal.2015.11.059
12.
Zhang
,
J. X.
,
Bai
,
Y. Q.
,
Kang
,
J.
, and
Wu
,
X.
,
2017
, “
Failure Analysis and Erosion Prediction of Tee Junction in Fracturing Operation
,”
J. Loss Prev. Process Ind.
,
46
, pp.
94
107
.10.1016/j.jlp.2017.01.023
13.
Zhang
,
R.
,
Liu
,
H. X.
, and
Zhao
,
C. T.
,
2013
, “
A Probability Model for Solid Particle Erosion in a Straight Pipe
,”
Wear
,
308
(
1–2
), pp.
1
9
.10.1016/j.wear.2013.09.011
14.
Liu
,
H.
, and
Hao
,
M.
,
2018
, “
Study on Erosion Wear of Fracturing Pipe Caused by Solid Proppant in Sand Fracturing
,”
J. Saf. Sci. Technol.
,
14
(
1
), pp.
87
94
.10.3969/j.issn.1001-4578.2014.10.027
15.
Kimura
,
I.
, and
Hosoda
,
T.
,
2003
, “
A Non-Linear k-Epsilon Model With Realizability for Prediction of Flows Around Bluff Bodies
,”
Int. J. Numer. Methods Fluids
,
42
(
8
), pp.
813
837
.10.1002/fld.540
16.
Rohdin
,
P.
, and
Moshfegh
,
B.
,
2007
, “
Numerical Predictions of Indoor Climate in Large Industrial Premises. A Comparison Between Different k–ε Models Supported by Field Measurements
,”
Build. Environ.
,
42
(
11
), pp.
3872
3882
.10.1016/j.buildenv.2006.11.005
17.
Zhang
,
J.
,
Zhang
,
H.
,
Zhang
,
L.
, and
Liang
,
Z.
,
2020
, “
Buckling Response Analysis of Buried Steel Pipe Under Multiple Explosive Loadings
,”
J. Pipeline Syst. Eng. Pract.
,
11
(
2
), p.
04020010
.10.1061/(ASCE)PS.1949-1204.0000431
18.
Zhang
,
J.
, and
Xie
,
J.
,
2020
, “
Effect of Reservoir's Permeability and Porosity on the Performance of Cellular Development Model for Enhanced Geothermal System
,”
Renewable Energy
,
148
, pp.
824
838
.10.1016/j.renene.2019.10.168
19.
Finnie
,
I.
,
1960
, “
Erosion of Surfaces by Solid Particles
,”
Wear
,
3
(
2
), pp.
87
103
.10.1016/0043-1648(60)90055-7
20.
Finnie
,
I.
,
1995
, “
Some Reflections on the Past and Future of Erosion
,”
Wear
,
186
, pp.
1
10
.10.1016/0043-1648(95)07188-1
21.
Oka
,
Y. I.
,
Okamura
,
K.
, and
Yoshida
,
T.
,
2005
, “
Practical Estimation of Erosion Damage Caused by Solid Particle Impact: Part 1: Effects of Impact Parameters on a Predictive Equation
,”
Wear
,
259
(
1–6
), pp.
95
101
.10.1016/j.wear.2005.01.039
22.
Grant
,
G.
, and
Tabakoff
,
W.
,
1975
, “
Erosion Prediction in Turbomachinery Resulting From Environmental Solid Particles
,”
J. Aircr.
,
12
(
5
), pp.
471
478
.10.2514/3.59826
You do not currently have access to this content.