Abstract

Cracks and corrosion in pipelines can occur simultaneously, representing a hybrid defect known as cracks in corrosion (CIC), which is often difficult to model using the available assessment codes or methods. As a result, detailed modeling of CIC has not been studied extensively. In this study, the extended finite element method (XFEM) has been applied to predict the failure pressures of CIC defects in API 5 L Grade X42 and X52 pipes. The pipes were only subjected to internal pressure and the XFEM models were validated using full-scale burst tests available in the literature. Several CIC models with constant total defect depths (55% and 60% of wall thickness) were constructed to investigate the effect of the initial crack depth on the failure pressure. The failure criterion was defined when wall penetration occurred due to crack growth, i.e., the instance the crack reached the innermost element of the pipe wall mesh. It was observed that for shorter cracks, the failure pressure decreased with the increase of the initial crack depth. The results indicated that the CIC defect could be treated as crack-only defects when the initial crack depth exceeded 50% of the total defect depth. However, for longer cracks, the initial crack depth was found to have a negligible effect on the failure pressure, implying that the CIC defect could be treated as either a crack or corrosion utilizing the available assessment methods.

References

1.
Mondal
,
B. C.
,
2018
, “
Remaining Strength Assessment of Deteriorating Energy Pipelines
,”
Ph.D. dissertation
,
Memorial University of Newfoundland
, St. John's, NL, Canada.https://research.library.mun.ca/13618/
2.
Kim
,
Y. S.
, and
Kim
,
J. G.
,
2018
, “
Failure Analysis of a Thermally Insulated Pipeline in a District Heating System
,”
Eng. Failure Anal.
,
83
, pp.
193
206
.10.1016/j.engfailanal.2017.09.014
3.
Stack
,
M. M.
, and
Abdulrahman
,
G. H.
,
2010
, “
Mapping Erosion-Corrosion of Carbon Steel in Oil Exploration Conditions: Some New Approaches to Characterizing Mechanisms and Synergies
,”
Tribol. Int.
,
43
(
7
), pp.
1268
1277
.10.1016/j.triboint.2010.01.005
4.
Rinehart
,
A. J.
, and
Keating
,
P. B.
,
2002
, “
Predicting Fatigue Life of Long Dents in Petroleum Pipeline
,”
ASME
Paper No. OMAE 2002-28015.10.1115/OMAE2002-28015
5.
Alang
,
N. A.
,
Razak
,
N. A.
, and
Zulfadli
,
M. R.
,
2013
, “
The Influence of Gouge Defect on Failure Pressure of Steel Pipes
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
50
(
1
), p. 012017.https://iopscience.iop.org/article/10.1088/1757-899X/50/1/012017
6.
Escoe
,
A. K.
,
2006
,
Piping and Pipeline Assessment Guide
,
Gulf Professional Publishing
,
New York
.
7.
Bedairi
,
B.
,
Cronin
,
D.
,
Hosseini
,
A.
, and
Plumtree
,
A.
,
2012
, “
Failure Prediction for Crack-in Corrosion Defects in Natural Gas Transmission Pipelines
,”
Int. J. Pressure Vessels Piping
,
96–97
, pp.
90
99
.10.1016/j.ijpvp.2012.06.002
8.
Fu
,
B.
, and
Batte
,
A. D.
,
1998
, “
Advanced Methods for the Assessment of Corrosion in Linepipe
,” UK Health and Safety Executive, London, UK, Report No. OTO 97065.
9.
Hassanien
,
S. S. A.
, and
Adeeb
,
S.
,
2006
, “
Probabilistic-Based Assessment of Corroded Pipelines: A Comparison Between Closed Form and Surrogate Limit States
,”
IPC 2006-10247 Proceedings of the 11th International Pipeline Conference
, Calgary, AB, Canada.
10.
API and ASME,
2007
,
Fitness-for-Service, and 2016
,” American Petroleum Institute (API) and American Society of Mechanical Engineers (ASME), New York, Report No.
API 579-1/ASME FFS-1
. https://inspectioneering.com/tag/api+579#:~:text=The%20latest%20edition%20was%20published,to%20recognized%20codes%20and%20standards.
11.
British Standards Institute
,
2013
, “
Guide to Methods for Assessing the Acceptability of Flaws in Metallic Structures
,” British Standards Institute, UK, Report No.
BS 7910
.https://www.academia.edu/33758342/Guide_to_methods_for_assessing_the_acceptability_of_flaws_in_metallic_structures
12.
Jaske
,
C. E.
,
2010
, “CorLAS User Manual, Version 2.25”.
13.
Zhang
,
X. F.
,
Okodi
,
A.
,
Tan
,
L. C.
,
Leung
,
J. Y.
, and
Adeeb
,
S.
,
2021
, “
Failure Pressure Prediction of Crack in Corrosion Defects Using XFEM
,”
ASME
Paper No. IPC 2020-9312.
10.1115/IPC2020-9312
14.
Ma
,
J.
,
Zhang
,
F.
, and
Tuggle
,
J.
,
2020
, “
Assessment of Fitness-for-Service for Crack-Within-Corrosion Anomalies
,” Pipeline Research Council International, Chantilly, VA, Report No.
PR218-173602-R01
.https://www.prci.org/190694.aspx
15.
Zhang
,
X. F.
,
Okodi
,
A.
,
Tan
,
L. C.
,
Leung
,
J. Y.
, and
Adeeb
,
S.
,
2020
, “
Failure Pressure Prediction of Crack in Corrosion Defects in 2D by Using XFEM
,”
ASME
Paper No. PVP 2020-21046.10.1115/PVP2020-21046
16.
Hosseini
,
A.
,
Cronin
,
D.
, and
Plumtree
,
A.
,
2013
, “
Crack in Corrosion Defect Assessment in Transmission Pipelines
,”
ASME J. Pressure Vessel Technol.
,
135
(
2
), p.
021701
.10.1115/1.4007644
17.
Okodi
,
A.
,
Lin
,
M.
,
Nader
,
Y. G.
,
Kainat
,
M.
,
Hassanien
,
S.
, and
Adeeb
,
S.
,
2020
, “
Crack Propagation and Burst Pressure of Longitudinally Cracked Pipelines Using Extended Finite Element Method
,”
Int. J. Pressure Vessels Piping
,
184
, p.
104115
.10.1016/j.ijpvp.2020.104115
18.
Lin
,
M.
,
Agbo
,
S.
,
Duan
,
D.-M.
,
Cheng
,
J. J. R.
, and
Adeeb
,
S.
,
2020
, “
Simulation of Crack Propagation in API 5 L X52 Pressurized Pipes Using XFEM-Based Cohesive Segment Approach
,”
J. Pipeline Syst. Eng. Pract.
,
11
(
2
), p.
04020009
.10.1061/(ASCE)PS.1949-1204.0000444
19.
Agbo
,
S.
,
Lin
,
M.
,
Ameli
,
I.
,
Imanpour
,
A.
,
Duan
,
D.
,
Cheng
,
J. J.
, and
Adeeb
,
S.
,
2019
, “
Evaluation of the Effect of Internal Pressure and Flaw Size on the Tensile Strain Capacity of X42 Vintage Pipeline Using Damage Plasticity Model in Extended Finite Element Method (XFEM)
,”
ASME
Paper No. PVP 2019–94005.10.1115/PVP2019-94005
20.
Belytschko
,
T.
,
MoëS
,
N.
,
Usui
,
S.
, and
Parimi
,
C.
,
2001
, “
Arbitrary Discontinuities in Finite Elements
,”
Int. J. Numer. Methods Eng.
,
50
(
4
), pp.
993
1013
.10.1002/1097-0207(20010210)50:4<993::AID-NME164>3.0.CO;2-M
21.
Zhuang
,
Z.
,
Liu
,
Z. L.
,
Cheng
,
B. B.
, and
Liao
,
J. H.
,
2014
, “
Extended Finite Element Method
,”
Tsinghua University Press Computational Mechanics Series
,
Academic Press
, Cambridge, MA, pp.
51
73
.
22.
Arnesson
,
S.
,
2014
, “
XFEM-Analysis and Implementation
,”
M.Sc. dissertation
,
Lund University
, Lund, Sweden.https://www.solid.lth.se/fileadmin/hallfasthetslara/utbildning/examensarbete/TFHF5186.pdf
23.
Abaqus,
2019
,
Documentation
,
Dassault Systèmes
, Vélizy-Villacoublay, France.
24.
Wahab
,
M. M.
,
2015
,
Fatigue and Fracture of Adhesively-Bonded Composite Joints
,
A. P.
Vassilopoulos
, eds.,
Woodhead Publishing
, Sawston, UK, pp.
323
344
.
25.
Desai
,
C. K.
,
Basu
,
S.
, and
Parameswaran
,
V.
,
2016
, “
Determination of Traction Separation Law for Interfacial Failure in Adhesive Joints at Different Loading Rates
,”
J. Adhes.
,
92
(
10
), pp.
819
839
.10.1080/00218464.2015.1046986
26.
Zhang
,
Y. M.
,
Fan
,
M.
,
Xiao
,
Z. M.
, and
Zhang
,
W. G.
,
2016
, “
Fatigue Analysis on Offshore Pipelines With Embedded Cracks
,”
Ocean Eng.
,
117
, pp.
45
56
.10.1016/j.oceaneng.2016.03.038
27.
Liu
,
P. F.
,
Zhang
,
B. J.
, and
Zheng
,
J. Y.
,
2012
, “
Finite Element Analysis of Plastic Collapse and Crack Behavior of Steel Pressure Vessels and Piping Using XFEM
,”
J. Failure Anal. Prev.
,
12
(
6
), pp.
707
718
.10.1007/s11668-012-9623-8
28.
Talemi
,
R. H.
,
2016
, “
Numerical Simulation of Dynamic Brittle Fracture of Pipeline Steel Subjected to DWTT Using XFEM-Based Cohesive Segment Technique
,”
Fratt. Integr. Strut. (Fract. Struct. Integr.)
,
10
(
36
), pp.
151
159
.10.3221/IGF-ESIS.36.15
29.
Hojjati-Talemi
,
R.
,
Cooreman
,
S.
, and
Van Hoecke
,
D.
,
2018
, “
Finite Element Simulation of Dynamic Brittle Fracture in Pipeline Steel: A XFEM-Based Cohesive Zone Approach
,”
Proc. Inst. Mech. Eng., Part L J. Mater. Des. Appl.
,
232
(
5
), pp.
357
314
.10.1177/1464420715627379
30.
Li
,
H.
, and
Chandra
,
N.
,
2003
, “
Analysis of Crack Growth and Crack-Tip Plasticity in Ductile Materials Using Cohesive Zone Models
,”
Int. J. Plasticity
,
19
(
6
), pp.
849
882
.10.1016/S0749-6419(02)00008-6
31.
Kiefner
,
J. F.
,
2008
, “
Modified Equation Aids Integrity Management (Part 1)
,”
Oil Gas J.
https://www.researchgate.net/publication/293589947_Modified_equation_aids_integrity_management
32.
Shih
,
C.
, and
Hutchinson
,
J.
,
1976
, “
Fully Plastic Solutions and Large Scale Yielding Estimates for Plane Stress Crack Problems
,”
ASME J. Eng. Mater. Technol.
,
98
(
4
), pp.
289
295
.10.1115/1.3443380
33.
Hosseini
,
A.
,
2010
, “
Assessment of Crack in Corrosion Defects in Natural Gas Transmission Pipelines
,”
M.Sc. dissertation
,
University of Waterloo, Waterloo, ON, Canada
.10.1115/IPC2008-64339
34.
Mondal
,
B. C.
, and
Dhar
,
A. S.
,
2019
, “
Burst Pressure Assessment of Corroded Pipelines Using Fracture Mechanics Criterion
,”
Eng. Failure Anal.
,
104
, pp.
139
153
.10.1016/j.engfailanal.2019.05.033
35.
Beden
,
S. M.
,
2016
, “
Reliability of the Installation and Operation of Pipeline Systems
,”
Basrah J. Eng. Sci.
,
16
(
2
), pp.
108
112
.https://search.emarefa.net/detail/BIM-724650
36.
API Specification 5 L
,
2018
,
Specification for Line Pipe
, 46th ed.,
American Petroleum Institute (API)
,
Washington, DC
.
37.
Ameli
,
I.
,
Behrouz
,
A.
,
Lin
,
M.
,
Agbo
,
S.
,
Imanpour
,
A.
,
Duan
,
D.-M.
,
Cheng
,
J. J. R.
, and
Adeeb
,
S.
,
2018
, “
Determination of CMOD-Force Curves and R-Curves in Side-Grooved Single Edge Notched Tensile (SENT) Specimens in Welded X42 Pipeline Steel
,”
Int. J. Pressure Vessels Piping
,
163
, pp.
68
74
.10.1016/j.ijpvp.2018.04.003
You do not currently have access to this content.