Abstract

Corrosion and erosion are the main factors of pipes failure. Erosion wear characteristics of elbow pipe with corrosion defect are investigated in this paper. Initially, the erosion result of nondefect elbow pipe is calculated and compared to elbow pipe with corrosion defect. An elliptical erosion area with a V-shaped dent occurs at the extrados due to the particles' impact. The uniform corrosion defects change the structure of the pipe's inner surface. Therefore, the defect areas are more prone to be impacted by particles and then more severe erosion occurs. The maximum erosion rates of corrosion defect and noncorrosion area synchronously reach the maximum value as the corrosion defect located at 55 deg. The larger the particle mass flow rate is, the more severe the elbow pipe erosion is. As the flow rate increases, erosion rates of corrosion area and noncorrosion area increase, while the maximum erosion rate of corrosion area occurs at 55 deg. Structural parameters of corrosion defects affect the erosion. As the distance between two corrosion defects increases, the maximum erosion rate of lower corrosion defect increases. Considering the location, structure, and number of corrosion defect, a larger corrosion defect located in the middle of extrados has a worse effect on elbow pipe safety.

References

1.
Qiao
,
Q.
,
Cheng
,
G.
,
Li
,
Y.
,
Wu
,
W.
,
Hu
,
H.
, and
Huang
,
H.
,
2017
, “
Corrosion Failure Analyses of an Elbow and an Elbow-to-Pipe Weld in a Natural Gas Gathering Pipeline
,”
Eng. Failure Anal.
,
82
, pp.
599
616
.10.1016/j.engfailanal.2017.04.016
2.
Zhang
,
J.
,
Zhang
,
H.
,
Zhang
,
L.
, and
Liang
,
Z.
,
2020
, “
Buckling Response Analysis of Buried Steel Pipe Under Multiple Explosive Loadings
,”
J. Pipeline Syst. Eng. Pract.
,
11
(
2
), p.
04020010
.10.1061/(ASCE)PS.1949-1204.0000431
3.
Liu
,
H.
,
Zhou
,
Z.
, and
Liu
,
M.
,
2015
, “
A Probability Model of Predicting the Sand Erosion Profile in Elbows for Gas Flow
,”
Wear
,
342–343
, pp.
377
390
.10.1016/j.wear.2015.09.012
4.
Ribeiro Duarte
,
C. A.
,
De Souza
,
F. J.
, and
Dos Santos
,
V. F.
,
2015
, “
Numerical Investigation of Mass Loading Effects on Elbow Erosion
,”
Powder Technol.
,
283
, pp.
593
606
.10.1016/j.powtec.2015.06.021
5.
Karimi
,
S.
,
Shirazi
,
S. A.
, and
Mclaury
,
B. S.
,
2017
, “
Predicting Fine Particle Erosion Utilizing Computational Fluid Dynamics
,”
Wear
,
376–377
, pp.
1130
1137
.10.1016/j.wear.2016.11.022
6.
Chegeni
,
B.
,
Jayasuriya
,
S.
, and
Das
,
S.
,
2019
, “
Effect of Corrosion on Thin-Walled Pipes Under Combined Internal Pressure and Bending
,”
Thin-Walled Struct.
,
143
, p.
106218
.10.1016/j.tws.2019.106218
7.
Zhu
,
Y.
,
Xu
,
Y.
,
Li
,
K.
,
Wang
,
X.
,
Liu
,
G.
, and
Huang
,
Y.
,
2019
, “
Experimental Study on Non-Uniform Corrosion of Elbow-to-Pipe Weldment Using Multiple Ring Form Electrical Resistance Sensor Array
,”
Measurement
,
138
, pp.
8
24
.10.1016/j.measurement.2019.02.035
8.
Teixeira
,
A. P.
,
Palencia
,
O. G.
, and
Guedes Soares
,
C.
,
2019
, “
Reliability Analysis of Pipelines With Local Corrosion Defects Under External Pressure
,”
ASME J. Offshore Mech. Arct. Eng.
,
141
(
5
), p.
051601
.10.1115/1.4042384
9.
Liang
,
Z.
,
Xiao
,
Y.
, and
Zhang
,
J.
,
2018
, “
Stress-Strain Analysis of a Pipeline With Inner and Outer Corrosion Defects
,”
ASME J. Pressure Vessel Technol.
,
140
(
6
), p.
064501
.10.1115/1.4041434
10.
Zhang
,
J.
, and
Xie
,
J. X.
,
2020
, “
Effect of Reservoir's Permeability and Porosity on the Performance of Cellular Development Model for Enhanced Geothermal System
,”
Renewable Energy
,
148
, pp.
824
838
.10.1016/j.renene.2019.10.168
11.
Zhang
,
J.
, and
Hu
,
Y.
,
2020
, “
Sealing Performance and Mechanical Behavior of PEMFCs Sealing System Based on Thermodynamic Coupling
,”
Int. J. Hydrogen Energy
,
45
(
43
), pp.
23480
23489
.10.1016/j.ijhydene.2020.06.167
12.
Owen
,
J.
,
Ducker
,
E.
,
Huggan
,
M.
,
Ramsey
,
C.
,
Neville
,
A.
, and
Barker
,
R.
,
2019
, “
Design of an Elbow for Integrated Gravimetric, Electrochemical and Acoustic Emission Measurements in Erosion-Corrosion Pipe Flow Environments
,”
Wear
,
428–429
, pp.
76
84
.10.1016/j.wear.2019.03.010
13.
Liu
,
J. G.
,
Bakedashi
,
W. L.
,
Li
,
Z. L.
,
Xu
,
Y. Z.
,
Ji
,
W. R.
,
Zhang
,
C.
,
Cui
,
G.
, and
Zhang
,
R. Y.
,
2017
, “
Effect of Flow Velocity on Erosion Corrosion of 90-Degree Horizontal Elbow
,”
Wear
,
376–377
, pp.
516
525
.10.1016/j.wear.2016.11.015
14.
Zhao
,
W.
,
Wang
,
C.
,
Zhang
,
T.
,
Yang
,
M.
,
Han
,
B.
, and
Neville
,
A.
,
2016
, “
Effects of Laser Surface Melting on Erosion-Corrosion of X65 Steel in Liquid-Solid Jet Impingement Conditions
,”
Wear
,
362–363
, pp.
39
52
.10.1016/j.wear.2016.05.006
15.
Zeng
,
L.
,
Shuang
,
S.
,
Guo
,
X. P.
, and
Zhang
,
G. A.
,
2016
, “
Erosion-Corrosion of Stainless Steel at Different Locations of a 90 Degrees Elbow
,”
Corros. Sci.
,
111
, pp.
72
83
.10.1016/j.corsci.2016.05.004
16.
Shirazi
,
S. A.
,
Shadley
,
J. R.
,
McLaury
,
B. S.
, and
Rybicki
,
E. F.
,
1995
, “
A Procedure to Predict Solid Particle Erosion in Elbows and Tees
,”
ASME J. Pressure Vessel Technol.
,
117
(
1
), pp.
45
52
.10.1115/1.2842089
17.
Kimura
,
I.
, and
Hosoda
,
T.
,
2003
, “
A Non-Linear k–ε Model With Realizability for Prediction. Kimura I
,”
Int. J. Numer. Methods Fluids
,
42
(
8
), pp.
813
827
.10.1002/fld.540
18.
Zhang
,
Y.
,
Reuterfors
,
E. P.
,
Mclaury
,
B. S.
,
Shirazi
,
S. A.
, and
Rybicki
,
E. F.
,
2007
, “
Comparison of Computed and Measured Particle Velocities
,”
Wear
,
263
(
1–6
), pp.
330
338
.10.1016/j.wear.2006.12.048
19.
Finnie
,
I.
,
1995
, “
Some Reflections on the Past and Future of Erosion
,”
Wear
,
186–187
, pp.
1
10
.10.1016/0043-1648(95)07188-1
20.
Oka
,
Y. I.
,
Mihara
,
S.
, and
Yoshida
,
T.
,
2009
, “
Practical Estimation of Erosion Damage Caused by Solid Particle Impact—Part 1: Effects of Impact Parameters on a Predictive Equation
,”
Wear
,
267
(
1–4
), pp.
129
135
.10.1016/j.wear.2008.12.091
21.
Zeng
,
D.
,
Zhang
,
E.
,
Ding
,
Y.
,
Yi
,
Y.
,
Xian
,
Q.
,
Yao
,
G.
,
Zhu
,
H.
, and
Shi
,
T.
,
2018
, “
Investigation of Erosion Behaviors of Sulfur-Particle-Laden Gas Flow in an Elbow Via a CFD-DEM Coupling Method
,”
Powder Technol.
,
329
, pp.
115
128
.10.1016/j.powtec.2018.01.056
You do not currently have access to this content.