Abstract

A pressurized vessel-pipe-safety valve (PVPSV) system is a common configuration for many energy management systems, and a better understanding of their dynamics is helpful for system design and optimization. In this paper, a method for high-fidelity computational fluid dynamics (CFD) modeling is presented, which can be used to predict dynamic responses of PVPSV systems. For modeling, regions from the vessel outlet to the safety valve exit flange are modeled using a CFD approach; the pressure vessel is set as the boundary and the movement of the valve disk is represented by a one-dimensional (1D) rigid body motion model. Simulations are performed, and both stable and unstable operation are investigated. To establish accuracy, an experimental test rig is designed and constructed to measure the motion of the valve disk and the pressures at different system locations. Comparisons are performed for different dynamic modes and good agreement is obtained, supporting the accuracy of the high-fidelity model in reproducing the dynamic response of PVPSV systems. With the developed model, influences of other variables, such as piping length and safety valve configurations, can also be evaluated. The method presented in this paper can also be used to develop CFD models for other similar systems and should facilitate system design and optimization.

References

1.
Darby
,
R.
,
2013
, “
The Dynamic Response of Pressure Relief Valves in Vapor or Gas Service—Part I: Mathematical Model
,”
J. Loss Prev. Process Ind.
,
26
(
6
), pp.
1262
1268
.10.1016/j.jlp.2013.07.004
2.
Qian
,
J. Y.
,
Wei
,
L.
,
Zhu
,
G. R.
,
Chen
,
F. Q.
, and
Jin
,
Z. J.
,
2016
, “
Transmission Loss Analysis of Thick Perforated Plates for Valve Contained Pipelines
,”
Energy Convers. Manage.
,
109
, pp.
86
93
.10.1016/j.enconman.2015.11.058
3.
Zheng
,
F. J.
,
Zong
,
C. Y.
,
Dempster
,
W.
,
Qu
,
F. Z.
, and
Song
,
X. G.
,
2019
, “
A Multidimensional and Multiscale Model for Pressure Analysis in a Reservoir-Pipe-Valve System
,”
ASME J. Pressure Vessel Technol.
,
141
(
5
), p.
051603
.10.1115/1.4044117
4.
Frommann
,
O.
, and
Friedel
,
L.
,
1998
, “
Analysis of Safety Relief Valve Chatter Induced by Pressure Wave in Gas Flow
,”
J. Loss Prev. Process Ind.
,
11
(
4
), pp.
279
290
.10.1016/S0950-4230(97)00040-5
5.
Song
,
X. G.
,
Cui
,
L.
,
Cao
,
M. S.
,
Cao
,
W. P.
,
Park
,
Y. C.
, and
Dempster
,
W. M.
,
2014
, “
A CFD Analysis of the Dynamics of a Direct-Operated Safety Relief Valve Mounted on a Pressure Vessel
,”
Energy Convers. Manage.
,
81
, pp.
407
419
.10.1016/j.enconman.2014.02.021
6.
Erdődi
,
I.
, and
Hős
,
C.
,
2017
, “
Prediction of Quarter-Wave Instability in Direct Spring Operated Pressure Relief Valves With Upstream Piping by Means of CFD and Reduced Order Modelling
,”
J. Fluids Struct.
,
73
, pp.
37
52
.10.1016/j.jfluidstructs.2017.05.003
7.
Song
,
X. G.
,
Wang
,
L. T.
,
Park
,
Y. C.
, and
Sun
,
W.
,
2015
, “
A Fluid-Structure Interaction Analysis of the Spring-Loaded Pressure Safety Valve During Popping Off
,”
Procedia Eng.
,
130
, pp.
87
94
.10.1016/j.proeng.2015.12.178
8.
Song
,
X. G.
,
Wang
,
L.
, and
Park
,
Y. C.
,
2010
, “
Transient Analysis of a Spring-Loaded Pressure Safety Valve Using Computational Fluid Dynamics (CFD)
,”
ASME J. Pressure Vessel Technol.
,
132
(
5
), p.
054501
.10.1115/1.4001428
9.
Lisowski
,
E.
,
Czy
,
ż
,
Ycki
,
W.
, and
Rajda
,
J.
,
2013
, “
Three Dimensional CFD Analysis and Experimental Test of Flow Force Acting on the Spool of Solenoid Operated Directional Control Valve
,”
Energy Convers. Manage.
,
70
, pp.
220
229
.10.1016/j.enconman.2013.02.016
10.
Zong
,
C.
,
Zheng
,
F.
,
Chen
,
D.
,
Dempster
,
W.
, and
Song
,
X.
,
2020
, “
Computational Fluid Dynamics Analysis of the Flow Force Exerted on the Disk of a Direct-Operated Pressure Safety Valve in Energy System
,”
ASME J. Pressure Vessel Technol.
,
142
(
1
), p.
011702
.10.1115/1.4045131
11.
Darby
,
R.
, and
Aldeeb
,
A. A.
,
2014
, “
The Dynamic Response of Pressure Relief Valves in Vapor or Gas Service—Part III: Model Validation
,”
J. Loss Prev. Process Ind.
,
31
, pp.
133
141
.10.1016/j.jlp.2014.06.001
12.
Aldeeb
,
A. A.
,
Darby
,
R.
, and
Arndt
,
S.
,
2014
, “
The Dynamic Response of Pressure Relief Valves in Vapor or Gas Service—Part II: Experimental Investigation
,”
J. Loss Prev. Process Ind.
,
31
, pp.
127
132
.10.1016/j.jlp.2014.06.002
13.
Dempster
,
W.
, and
Alshaikh
,
M.
,
2018
, “
CFD Prediction of Safety Valve Disc Forces Under Two Phase Flow Conditions
,”
ASME
Paper No. PVP 2018-84745.10.1115/2018-84745
14.
Dempster
,
W.
,
Lee
,
C. K.
, and
Deans
,
J.
,
2006
, “
Prediction of the Flow and Force Characteristics of Safety Relief Valves
,”
ASME
Paper No. PVP 2006-ICPVT-11-93142.10.1115/2006-ICPVT-11-93142
15.
Beune
,
A.
,
Kuerten
,
J. G. M.
, and
van Heumen
,
M. P. C.
,
2012
, “
CFD Analysis With Fluid-Structure Interaction of Opening High-Pressure Safety Valves
,”
Comput. Fluids
,
64
, pp.
108
116
.10.1016/j.compfluid.2012.05.010
16.
Qian
,
J. Y.
,
Liu
,
B. Z.
,
Lei
,
L. N.
,
Zhang
,
H.
,
Lu
,
A. L.
,
Wang
,
J. K.
, and
Jin
,
Z. J.
,
2016
, “
Effects of Orifice on Pressure Difference in Pilot-Control Globe Valve by Experimental and Numerical Methods
,”
Int. J. Hydrogen Energy
,
41
(
41
), pp.
18562
18570
.10.1016/j.ijhydene.2016.08.070
17.
Jin
,
Z. J.
,
Chen
,
F. Q.
,
Qian
,
J. Y.
,
Zhang
,
M.
,
Chen
,
L. L.
,
Wang
,
F.
, and
Fei
,
Y.
,
2016
, “
Numerical Analysis of Flow and Temperature Characteristics in a High Multi-Stage Pressure Reducing Valve for Hydrogen Refueling Station
,”
Int. J. Hydrogen Energy
,
41
(
12
), pp.
5559
5570
.10.1016/j.ijhydene.2016.02.013
18.
Qian
,
J. Y.
,
Gao
,
Z. X.
,
Wang
,
J. K.
, and
Jin
,
Z. J.
,
2017
, “
Experimental and Numerical Analysis of Spring Stiffness on Flow and Valve Core Movement in Pilot Control Globe Valve
,”
Int. J. Hydrogen Energy
,
42
(
27
), pp.
17192
17201
.10.1016/j.ijhydene.2017.05.190
19.
Zhang
,
S. Z.
,
Aung
,
N. Z.
, and
Li
,
S. J.
,
2015
, “
Reduction of Undesired Lateral Forces Acting on the Flapper of a Flapper–Nozzle Pilot Valve by Using an Innovative Flapper Shape
,”
Energy Convers. Manage.
,
106
, pp.
835
848
.10.1016/j.enconman.2015.10.012
20.
Lisowski
,
E.
, and
Rajda
,
J.
,
2013
, “
CFD Analysis of Pressure Loss During Flow by Hydraulic Directional Control Valve Constructed From Logic Valves
,”
Energy Convers. Manage.
,
65
, pp.
285
291
.10.1016/j.enconman.2012.08.015
21.
Duan
,
Y.
,
Eaton
,
M. D.
,
Bluck
,
M. J.
, and
Jackson
,
C.
,
2018
, “
A Validation of CFD Methods on Predicting Valve Performance Parameters
,”
ASME
Paper No. POWER2018-7434.10.1115/POWER2018-7434
22.
Duan
,
Y.
,
Jackson
,
C.
,
Eaton
,
M. D.
, and
Bluck
,
M. J.
,
2019
, “
An Assessment of Eddy Viscosity Models on Predicting Performance Parameters of Valves
,”
Nucl. Eng. Des.
,
342
, pp.
60
77
.10.1016/j.nucengdes.2018.11.036
23.
Hung
,
T. C.
,
Dhir
,
V. K.
,
Pei
,
B. S.
,
Chen
,
Y. S.
, and
Tsai
,
F. P.
,
2013
, “
The Development of a Three-Dimensional Transient CFD Model for Predicting Cooling Ability of Spent Fuel Pools
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
496
504
.10.1016/j.applthermaleng.2012.06.042
24.
Skye
,
H. M.
,
Nellis
,
G. F.
, and
Klein
,
S. A.
,
2006
, “
Comparison of CFD Analysis to Empirical Data in a Commercial Vortex Tube
,”
Int. J. Refrig.
,
29
(
1
), pp.
71
80
.10.1016/j.ijrefrig.2005.05.004
25.
Dutta
,
T.
,
Sinhamahapatra
,
K. P.
, and
Bandyopdhyay
,
S. S.
,
2010
, “
Comparison of Different Turbulence Models in Predicting the Temperature Separation in a Ranque-Hilsch Vortex Tube
,”
Int. J. Refrig.
,
33
(
4
), pp.
783
792
.10.1016/j.ijrefrig.2009.12.014
26.
Iaccarino
,
G.
,
2001
, “
Predictions of a Turbulent Separated Flow Using Commercial CFD Codes
,”
ASME J. Fluids Eng.
,
123
(
4
), pp.
819
828
.10.1115/1.1400749
27.
Yang
,
L.
,
Wang
,
Z. J.
,
Dempster
,
W.
,
Yu
,
X. H.
, and
Tu
,
S. T.
,
2017
, “
Experiments and Transient Simulation on Spring-Loaded Pressure Relief Valve Under High Temperature and High Pressure Steam Conditions
,”
J. Loss Prev. Process Ind.
,
45
, pp.
133
146
.10.1016/j.jlp.2016.11.019
28.
Zhang
,
J.
,
Yang
,
L.
,
Dempster
,
W.
,
Yu
,
X. H.
,
Jia
,
J. H.
, and
Tu
,
S. T.
,
2018
, “
Prediction of Blowdown of a Pressure Relief Valve Using Response Surface Methodology and CFD Techniques
,”
Appl. Therm. Eng.
,
133
, pp.
713
726
.10.1016/j.applthermaleng.2018.01.079
29.
Scuro
,
N. L.
,
Angelo
,
E.
,
Angelo
,
G.
, and
Andrade
,
D. A.
,
2018
, “
A CFD Analysis of the Flow Dynamics of a Directly-Operated Safety Relief Valve
,”
Nucl. Eng. Des.
,
328
, pp.
321
332
.10.1016/j.nucengdes.2018.01.024
30.
Asim
,
T.
,
Charlton
,
M.
, and
Mishra
,
R.
,
2017
, “
CFD Based Investigations for the Design of Severe Service Control Valves Used in Energy Systems
,”
Energy Convers. Manage.
,
153
, pp.
288
303
.10.1016/j.enconman.2017.10.012
31.
Wéber
,
R.
, and
Hős
,
C.
,
2017
, “
Experimental and Numerical Analysis of Hydraulic Transients in the Presence of Air Valve
,”
Period. Polytech. Mech. Eng.
,
62
(
1
), p.
1
.10.3311/PPme.10336
32.
Amirante
,
R.
,
Moscatelli
,
P. G.
, and
Catalano
,
L. A.
,
2007
, “
Evaluation of the Flow Forces on a direct (Single State) Proportional Valve by Means of a Computational Fluid Dynamic Analysis
,”
Energy Convers. Manage.
,
48
(
3
), pp.
942
953
.10.1016/j.enconman.2006.08.024
33.
Hős
,
C. J.
,
Champneys
,
A. R.
,
Paul
,
K.
, and
McNeely
,
M.
,
2014
, “
Dynamic Behavior of Direct Spring Loaded Pressure Relief Valves in Gas Service: Model Development, Measurements and Instability Mechanisms
,”
J. Loss Prev. Process Industries
,
31
, pp.
70
81
.10.1016/j.jlp.2014.06.005
34.
API
,
2014
, “
Sizing, Selection, and Installation of Pressure-Relieving Devices—Part I: Sizing and Selection
,”
American Petroleum Institute
,
Washington, DC
, Standard No. STD 520 P1.
35.
ANSYS, Inc.
, 2019, “
ANSYS Documentation, Fluent Tutorial Guide
,”
ANSYS
,
Canonsburg, PA
.
36.
ANSYS, Inc.
, 2019, “
ANSYS Documentation, Fluent, Turbulence, 4.0
,”
ANSYS
,
Canonsburg, PA
.
You do not currently have access to this content.