Abstract

Pressure strengthening (PS) technology, also called cold stretching, is widely used to increase the allowable stress and reduce the weight of cryogenic pressure vessels (CPVs) made of austenitic stainless steels (ASSs). However, with taking accounts of the manufacturing process and service environment of CPVs, the main source of the strengthening effect for yielding strength improvement is still unclarified. Therefore, in this work, the effect of the 9% prestrain and low-temperature (−196 °C) on cryogenic mechanical properties of S30408 stainless steel was comparatively investigated by cryogenic tensile test and martensitic transformation measurement. After evaluating the main source of strengthening increments, the effect of prestraining on welded joints was studied by Vickers microhardness test. Then the engineering significance of performing the PS on a cryogenic inner vessel was explored based on finite element analysis (FEA). It revealed that at −196 °C, the strengthening effect of low-temperature plays a leading role for strength increments, though the yield strength can be increased obviously by prestraining at room temperatures. Meanwhile, the performing of 9% prestrain could enhance the distribution uniformity of the Vickers microhardness of welded joints. Furthermore, the prior operation of PS on inner vessels is beneficial to prevent further plastic deformation during the subsequent hydraulic test, avoid thermal insulation degradation of the vacuum jackets and even stress concentrations in roots of pipes, which is also of engineering significance to smooth the subsequent processes such as the assembly with outer containers and other product tests.

References

References
1.
Jinyang
,
Z.
,
Linlin
,
W. U.
, and
Jianfeng
,
S.
,
2011
, “
Extreme Pressure Equipments
,”
Chin. J. Mech. Eng.
,
25
(
2
), pp.
202
206
.10.3901/CJME.2011.02.202
2.
Zohuri
,
B.
,
2018
, “
Cryogenic Equipment, Systems, and Applications
,”
Physics of Cryogenics
,
B.
Zohuri
, ed.,
Elsevier
,
Amsterdam, The Netherlands
, Chap. 16.
3.
Van Breugel
,
K.
,
1982
, “
A Designer's Perspective on Cryogenic Storage Systems for Liquefied Industrial Gases
,”
Cryogenics
,
22
(
7
), pp.
331
334
.10.1016/0011-2275(82)90030-3
4.
Zheng
,
J.
,
Guo
,
A.
,
Miao
,
C.
,
Xu
,
P.
,
Yang
,
J.
,
Ye
,
J.
,
Ma
,
L.
,
Wu
,
L.
, and
Yang
,
G.
,
2011
, “
Cold Stretching of Cryogenic Pressure Vessels From Austenitic Stainless Steels
,”
ASME
Paper No. PVP2011-57331.10.1115/PVP2011-57331
5.
Zheng
,
J.
,
Miao
,
C.
, and
Shou
,
B.
,
2009
, “
Light-Weight: A Trend in the Development of Pressure Vessels
,”
Pressure Vessel Technol.
,
26
(
9
), pp.
42
48
(in Chinese).
6.
Milad
,
M.
,
Zreiba
,
N.
,
Elhalouani
,
F.
, and
Baradai
,
C.
,
2008
, “
The Effect of Cold Work on Structure and Properties of AISI 304 Stainless Steel
,”
J. Mater. Process. Technol.
,
203
(
1–3
), pp.
80
85
.10.1016/j.jmatprotec.2007.09.080
7.
Zheng
,
J.
,
Lu
,
Q.
,
Wu
,
Y.
,
Zhang
,
X.
,
Ding
,
H.
,
Hui
,
P.
, and
Li
,
Q.
,
2019
, “
Research on Forming Temperature of Metastable Austenitic Stainless Steel Head Based on Strain-Induced Martensitic Transformation
,”
ASME J. Pressure Vessel Technol.
,
141
(
5
), p.
51401
.10.1115/1.4043995
8.
Nishimura
,
A.
,
1990
, “
Cryogenic Structural Materials and Their Welding and Joining
,”
Weld. Int.
,
4
(
4
), pp.
283
287
.10.1080/09507119009447724
9.
Lo
,
K. H.
,
Shek
,
C. H.
, and
Lai
,
J. K. L.
,
2009
, “
Recent Developments in Stainless Steels
,”
Mater. Sci. Eng. R
,
65
(
4–6
), pp.
39
104
.10.1016/j.mser.2009.03.001
10.
Choi
,
H. S.
,
Kim
,
J. H.
,
Kim
,
S. H.
,
Kim
,
K. D.
, and
Hur
,
K. B.
,
2016
, “
Fatigue Crack Growth Characteristics of Austenitic Stainless Steel for Cold-Stretched Pressure Vessels at Cryogenic Temperatures
,”
Materialwiss. Werkstofftech.
,
47
(
5–6
), pp.
444
451
.10.1002/mawe.201600520
11.
Zheng
,
J.
,
Miao
,
C.
,
Li
,
Y.
,
Xu
,
P.
,
Ma
,
L.
, and
Guo
,
A.
,
2012
, “
Investigation on Influence Factors of Mechanical Properties of Austenitic Stainless Steels for Cold Stretched Pressure Vessels
,”
ASME J. Pressure Vessel Technol.
,
134
(
6
), p.
61407
.10.1115/1.4007039
12.
Peterkin
,
J.
,
1981
, “
Cold Stretched Austenitic Stainless Steel Pressure Vessels
,” Symposium on Stress Analysis for Mechanical Design, Sydney, Australia, Aug. 26–27, Paper No. 81/4.
13.
Morikawa
,
T.
,
Senba
,
D.
,
Higashida
,
K.
, and
Onodera
,
R.
,
1999
, “
Micro Shear Bands in Cold-Rolled Austenitic Stainless Steel
,”
Mater. Trans., JIM
,
40
(
9
), pp.
891
894
.10.2320/matertrans1989.40.891
14.
Takaki
,
S.
,
Tomimura
,
K.
, and
Ueda
,
S.
,
1994
, “
Pre-Cold-Working on Diffusional Reversion of Deformation Martensite in Metastable Austenitic Stainless Steel
,”
ISIJ Int.
,
34
(
6
), pp.
522
527
.10.2355/isijinternational.34.522
15.
Fang
,
X. F.
, and
Dahl
,
W.
,
1991
, “
Strain Hardening and Transformation Mechanism of Deformation- Induced Martensite Transformation in Metastable Austenitic Stainless Steels
,”
Mater. Sci. Eng. A
,
141
(
2
), pp.
189
198
.10.1016/0921-5093(91)90769-J
16.
De
,
A. K.
,
Speer
,
J. G.
,
Matlock
,
D. K.
,
Murdock
,
D. C.
,
Mataya
,
M. C.
, Jr.
, and
Comstock
,
R. J.
,
2006
, “
Deformation-Induced Phase Transformation and Strain Hardening in Type 304 Austenitic Stainless Steel
,”
Metall. Mater. Trans. A
,
37
(
6
), pp.
1875
1886
.10.1007/s11661-006-0130-y
17.
Zhang
,
Y.
,
Li
,
M.
,
Bi
,
H.
,
Gu
,
J.
,
Chen
,
D.
,
Chang
,
E.
, and
Zhang
,
W.
,
2018
, “
Martensite Transformation Behavior and Mechanical Properties of Cold-Rolled Metastable Cr-Mn-Ni-N Austenitic Stainless Steels
,”
Mater. Sci. Eng. A
,
724
, pp.
411
420
.10.1016/j.msea.2018.03.113
18.
Ishimaru
,
E.
,
Hamasaki
,
H.
, and
Yoshida
,
F.
,
2014
, “
Deformation-Induced Martensitic Transformation and Workhardening of Type 304 Stainless Steel Sheet During Draw-Bending
,”
Procedia Eng.
,
81
, pp.
921
926
.10.1016/j.proeng.2014.10.118
19.
Shakhova
,
I.
,
Belyakov
,
A.
,
Yanushkevich
,
Z.
,
Tsuzaki
,
K.
, and
Kaibyshev
,
R.
,
2016
, “
On Strengthening of Austenitic Stainless Steel by Large Strain Cold Working
,”
ISIJ Int.
,
56
(
7
), pp.
1289
1296
.10.2355/isijinternational.ISIJINT-2016-095
20.
Schramm
,
R. E.
, and
Reed
,
R. P.
,
1975
, “
Stacking Fault Energies of Seven Commercial Austenitic Stainless Steels
,”
Metall. Trans. A
,
6
(
7
), pp.
1345
1351
.10.1007/BF02641927
21.
Nebel
,
T.
, and
Eifler
,
D.
,
2003
, “
Cyclic Deformation Behaviour of Austenitic Steels at Ambient and Elevated Temperatures
,”
Sadhana
,
28
(
1–2
), pp.
187
208
.10.1007/BF02717133
22.
Baldissera
,
P.
,
2010
, “
Deep Cryogenic Treatment of AISI 302 Stainless Steel—Part I: Hardness and Tensile Properties
,”
Mater. Des.
,
31
(
10
), pp.
4725
4730
.10.1016/j.matdes.2010.05.013
23.
Byun
,
T. S.
,
Hashimoto
,
N.
, and
Farrell
,
K.
,
2004
, “
Temperature Dependence of Strain Hardening and Plastic Instability Behaviors in Austenitic Stainless Steels
,”
Acta Mater.
,
52
(
13
), pp.
3889
3899
.10.1016/j.actamat.2004.05.003
24.
Kim
,
J.
,
Park
,
W.
,
Chun
,
M.
,
Kim
,
J.
,
Bae
,
J.
,
Kim
,
M.
, and
Lee
,
J.
,
2012
, “
Effect of Pre-Straining on Low-Temperature Mechanical Behavior of AISI 304 L
,”
Mater. Sci. Eng.: A
,
543
, pp.
50
57
.10.1016/j.msea.2012.02.044
25.
National Energy Administration of the People's Republic of China
, 2011, “
Mechanical Property Tests of Product Welded Test Coupons for Pressure Equipments
,” Xinhua Publishing House, Beijing, Standard No. NB/T
47016
2011
.
26.
General Administration of Quality Supervision, Inspection, and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China
,
2017
, “
Stainless Steel and Heat Resisting Steel Plate, Sheet and Strip for Pressure Equipments
,” Standards Press of China, Beijing, China, Standard No. GB/T
24511
2017
.
27.
ASTM
,
2018
, “
Standard Specification for Chromium and Chromium-Nickel Stainless Steel Plate, Sheet, and Strip for Pressure Vessels and for General Applications
,” ASTM International, Pennsylvania, PA, Standard No.
A240/A240M-18
.https://www.astm.org/Standards/A240.htm
28.
CEN National Members
,
2016
, “
Flat Products Made of Steels for Pressure Purposes—Part 7: Stainless Steels
,” Beuth Press, Berlin, Standard No. EN 10028-7:2016.
29.
General Administration of Quality Supervision, Inspection, and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China
,
2017
, “
Metallic Materials—Tensile Testing at Low Temperature
,” Standards Press of China, Beijing, China, Standard No. GB/T
13239
2006
.
30.
General Administration of Quality Supervision, Inspection, and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China
,
2017
, “
Metallic Materials—Tensile Testing—Part 1: Method of Test at Room Temperature
,” Standards Press of China, Beijing, China, Standard No. GB/T 228.1-2010.
31.
Hallberg
,
H.
,
Hakansson
,
P.
, and
Ristinmaa
,
M.
,
2007
, “
A Constitutive Model for the Formation of Martensite in Austenitic Steels Under Large Strain Plasticity
,”
Int. J. Plasticity
,
23
(
7
), pp.
1213
1239
.10.1016/j.ijplas.2006.11.002
32.
Zheng
,
J.
,
Wang
,
K.
,
Huang
,
Z.
,
Miao
,
C.
,
Ma
,
L.
,
Gu
,
C.
, and
Xu
,
P.
,
2014
, “
Study on Strength of Austenitic Stainless Steel Under Liquid-Nitrogen Temperature
,”
Pressure Vessel Technol.
, 31(
8
), pp.
1
6
(in Chinese).
33.
General Administration of Quality Supervision, Inspection, and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China
,
2009
, “
Lower Confidence Limit of Reliability for Complete Sample From Normal Distribution
,” Standards Press of China, Beijing, China, Standard No. GB/T
4885
2009
.
34.
Lu
,
J.
,
Hultman
,
L.
,
Holmström
,
E.
,
Antonsson
,
K. H.
,
Grehk
,
M.
,
Li
,
W.
,
Vitos
,
L.
, and
Golpayegani
,
A.
,
2016
, “
Stacking Fault Energies in Austenitic Stainless Steels
,”
Acta Mater.
,
111
, pp.
39
46
.10.1016/j.actamat.2016.03.042
35.
Moallemi
,
M.
,
Kermanpur
,
A.
,
Najafizadeh
,
A.
,
Rezaee
,
A.
,
Baghbadorani
,
H. S.
, and
Nezhadfar
,
P. D.
,
2016
, “
Deformation-Induced Martensitic Transformation in a 201 Austenitic Steel: The Synergy of Stacking Fault Energy and Chemical Driving Force
,”
Mater. Sci. Eng. A
,
653
, pp.
147
152
.10.1016/j.msea.2015.12.006
36.
Tian
,
Y.
,
Borgenstam
,
A.
, and
Hedström
,
P.
,
2018
, “
Comparing the Deformation-Induced Martensitic Transformation With the Athermal Martensitic Transformation in Fe-Cr-Ni Alloys
,”
J. Alloy. Compd.
,
766
, pp.
131
139
.10.1016/j.jallcom.2018.06.326
37.
Baldissera
,
P.
, and
Delprete
,
C.
,
2008
, “
Deep Cryogenic Treatment: A Bibliographic Review
,”
Open Mech. Eng. J.
,
2
(
1
), pp.
1
11
.10.2174/1874155X00802010001
38.
Olson
,
G. B.
, and
Cohen
,
M.
,
1975
, “
Kinetics of Strain-Induced Martensitic Nucleation
,”
Metall. Trans. A
,
6
(
4
), pp.
791
795
.10.1007/BF02672301
39.
Zhang
,
Y.
,
Gao
,
X.
,
Zhang
,
B.
,
Song
,
Z.
,
Zheng
,
J.
, and
Zhang
,
G.
,
2014
, “
Effect of Deformation Temperature on Microstructure Evolution of S30408 Austenitic Stainless Steel for Cold-Stretching Cryogenic Vessels
,”
Chin. J. Mater. Res.
,
28
(
9
), pp.
682
688
(in Chinese).
40.
Liu
,
W.
,
Li
,
Z.
,
Wang
,
X.
,
Zou
,
H.
, and
Wang
,
L.
,
2009
, “
Effect of Strain Rate on Strain Induced α'-Martensite Transformation and Mechanical Response of Austenitic Stainless Steels
,”
Acta Metall. Sin.
,
45
(
3
), pp.
285
291
(in Chinese).
41.
Ding
,
H.
,
Wu
,
Y.
,
Lu
,
Q.
,
Xu
,
P.
,
Zheng
,
J.
, and
Wei
,
L.
,
2018
, “
Tensile Properties and Impact Toughness of S30408 Stainless Steel and Its Welded Joints at Cryogenic Temperatures
,”
Cryogenics
,
92
, pp.
50
59
.10.1016/j.cryogenics.2018.04.002
42.
Chen
,
Y.
,
D
,
L.
, and
Kong
,
W.
,
2015
, “
Effects of Cold Stretching and Cryogenic Temperature on Structure and Property of Austenitic Stainless Steel
,”
Trans. Mater. Heat Treat.
,
36
(
z2
), pp.
75
80
(in Chinese).
43.
General Administration of Quality Supervision, Inspection, and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China
,
2017
, “
Static Vacuum Insulated Cryogenic Pressure Vessels—Part 7: Rules of Pressure Strengthening for Inner Vessels
,” Standards Press of China, Beijing, China, Standard No. GB/T 18442.7-2017.
You do not currently have access to this content.