Abstract

Ellipsoidal and torispherical heads, whose geometric shapes are close, are usually used as end closures of internally pressurized vessels. In pressure vessel codes, for example, ASME BPVC Section VIII and EN13445-3, ellipsoidal heads are designed as torispherical heads using geometric equivalency approaches. However, the difference between ellipsoidal and equivalent torispherical heads has not been studied in detail. In this paper, we first investigate shape deviation between the two types of heads. Then we compare elastic–plastic behaviors between ellipsoidal and equivalent torispherical heads as well as their failure modes, i.e., buckling and plastic collapse (bursting). It is found that ellipsoidal heads have more buckling resistance than equivalent torispherical heads, indicating that the current design rules for buckling of ellipsoidal heads based on the geometric equivalency approaches result in uneconomical design. In addition, experimental and numerical results show that such heads experience geometric strengthening. The finite element (FE) method considering the effect of geometric strengthening provides a good prediction of plastic collapse pressure. However, the current design equation for bursting does not consider the effect of geometric strengthening, also leading to uneconomical design. Therefore, in order to avoid uneconomical design, we recommend that (1) with respect to buckling of ellipsoidal heads, a new design equation be proposed rather than implementing the geometric equivalency approaches, and (2) the current design equation for bursting be deleted, and a new design equation, considering the effect of geometric strengthening, be proposed for bursting of ellipsoidal and torispherical heads.

References

1.
Westinghouse Electric Co., LLC
,
2011
, “Westinghouse AP1000 Design Control Document, Rev. 19,” U.S. Nuclear Regulatory Commission, Washington, DC, Accession No.
ML11171A500
.https://www.nrc.gov/docs/ML1117/ML11171A303.pdf
2.
Bushnell
,
D.
,
1976
, “
BOSOR 5—Program for Buckling of Elastic-Plastic Complex Shells of Revolution Including Large Deflections and Creep
,”
Comput. Struct.
,
6
(
3
), pp.
221
239
.10.1016/0045-7949(76)90034-1
3.
Bushnell
,
D.
,
1977
, “
Nonsymmetric Buckling of Internally Pressurized Ellipsoidal and Torispherical Elastic-Plastic Pressure Vessel Heads
,”
ASME J. Pressure Vessel Technol.
,
99
(
1
), pp.
54
63
.10.1115/1.3454520
4.
Galletly
,
G. D.
, and
Radhamohan
,
S. K.
,
1979
, “
Elastic-Plastic Buckling of Internally Pressurized Thin Torispherical Shells
,”
ASME J. Pressure Vessel Technol.
,
101
(
3
), pp.
216
225
.10.1115/1.3454626
5.
Galletly
,
G. D.
,
1981
, “
Plastic Buckling of Torispherical and Ellipsoidal Shells Subjected to Internal Pressure
,”
Proc. Inst. Mech. Eng.
,
195
(
1
), pp.
329
345
.10.1243/PIME_PROC_1981_195_034_02
6.
Galletly
,
G. D.
,
1986
, “
A Simple Design Equation for Preventing Buckling in Fabricated Torispherical Shells Under Internal Pressure
,”
ASME J. Pressure Vessel Technol.
,
108
(
4
), pp.
521
526
.10.1115/1.3264824
7.
Miller
,
C. D.
,
2001
, “
Buckling Criteria for Torispherical Heads Under Internal Pressure
,”
ASME J. Pressure Vessel Technol.
,
123
(
3
), pp.
318
323
.10.1115/1.1360692
8.
Li
,
K.
,
Zheng
,
J.
, and
Zhang
,
Z.
,
2016
, “
Experimental Investigation on Buckling of Steel Nuclear Containment With Elliptical Head
,”
ASME
Paper No. PVP2016-63498.10.1115/PVP2016-63498
9.
Li
,
K.
,
Zheng
,
J.
,
Zhang
,
Z.
,
Gu
,
C.
,
Zhang
,
X.
,
Liu
,
S.
,
Ge
,
H.
,
Gu
,
C.
, and
Lin
,
G.
,
2017
, “
Experimental Investigation on Buckling of Ellipsoidal Head of Steel Nuclear Containment
,”
ASME J. Pressure Vessel Technol.
,
139
(
6
), p.
061206
.10.1115/1.4038013
10.
Zheng
,
J.
,
Li
,
K.
,
Liu
,
S.
,
Ge
,
H.
,
Zhang
,
Z.
,
Gu
,
C.
,
Qian
,
H.
, and
Hua
,
Z.
,
2018
, “
Effect of Shape Imperfection on the Buckling of Large-Scale Thin-Walled Ellipsoidal Head in Steel Nuclear Containment
,”
Thin-Walled Struct.
,
124
, pp.
514
522
.10.1016/j.tws.2018.01.001
11.
Li
,
K.
,
Zheng
,
J.
,
Liu
,
S.
,
Ge
,
H.
,
Sun
,
G.
,
Zhang
,
Z.
,
Gu
,
C.
, and
Xu
,
P.
,
2019
, “
Buckling Behavior of Large-Scale Thin-Walled Ellipsoidal Head Under Internal Pressure
,”
Thin-Walled Struct.
,
141
, pp.
260
274
.10.1016/j.tws.2019.04.031
12.
Li
,
K.
,
Zheng
,
J.
,
Zhang
,
Z.
,
Gu
,
C.
,
Xu
,
P.
, and
Chen
,
Z.
,
2019
, “
A New Formula to Predict Buckling Pressure of Steel Ellipsoidal Head Under Internal Pressure
,”
Thin-Walled Struct.
,
144
, p.
106311
.10.1016/j.tws.2019.106311
13.
Updike
,
D. P.
, and
Kalnins
,
A.
,
1994
, “
Burst by Tensile Instability of Vessels With Torispherical Heads
,”
ASME/PVP
,
277
, pp.
89
94
.https://jglobal.jst.go.jp/en/detail?JGLOBAL_ID=200902197694600654
14.
Kalnins
,
A.
, and
Rana
,
M. D.
,
1996
, “
A New Design Criterion Based on Pressure Testing of Torispherical Heads
,” Welding Research Council Bulletin, No. 414, Welding Research Council Inc., New York.
15.
Kalnins
,
A.
, and
Updike
,
D. P.
,
1996
, “
Analysis of Failure of a Torispherical Head Under Internal Pressure
,”
ASME/PVP
,
338
, pp.
265
271
.https://www.osti.gov/biblio/404297-analysis-failure-torispherical-head-under-internal-pressure
16.
Rana
,
M. D.
, and
Kalnins
,
A.
,
2000
, “
Technical Basis for Code Cases on Design of Ellipsoidal and Torispherical Heads for ASME Section VIII Vessels
,”
ASME J. Pressure Vessel Technol.
,
122
(
1
), pp.
55
59
.10.1115/1.556150
17.
Galletly
,
G. D.
,
1981
, “
A Comparison of the Plastic Buckling Behaviour of 2:1 Ellipsoidal and 2:1 Torispherical Shells Subjected to Internal Pressure
,”
Physical Non-Linearities in Structural Analysis
, International Union of Theoretical and Applied Mechanics,
J.
Hult
, and
J.
Lemaitre
, eds.,
Springer
,
Berlin, Heidelberg
.10.1007/978-3-642-81582-9_13
18.
Magnucki
,
K.
,
Jasion
,
P.
, and
Rodak
,
M.
,
2018
, “
Strength and Buckling of an Untypical Dished Head of a Cylindrical Pressure Vessel
,”
Int. J. Press. Vessels Piping
,
161
, pp.
17
21
.10.1016/j.ijpvp.2018.02.003
19.
Błachut
,
J.
,
2018
, “
Load Bearing of Corroded Shells Under External/Internal Pressure
,”
J. Struct. Integrity Maint.
,
3
(
4
), pp.
217
226
.10.1080/24705314.2018.1535752
20.
ASME,
2019
, “ASME Boiler and Pressure Vessel Code, Section VIII, Division 1,”
American Society of Mechanical Engineering
,
New York
, Standard No. ASME BPVC.VIII.1-2019.
21.
ASME,
2019
, “ASME Boiler and Pressure Vessel Code, Section VIII, Division 2,”
American Society of Mechanical Engineering
,
New York
, Standard No. ASME BPVC.VIII.2-2019.
22.
CEN National Members
,
2018
, “Unfired Pressure Vessels – Part 3: Design,”
BSI Standards Limited
,
London
, Standard No. BS EN 13445-3: 2014+A8: 2018.
23.
Seipp
,
T. G.
,
Barkley
,
N.
, and
Wright
,
C.
,
2017
, “
Ellipsoidal Head Rules: A Comparison Between ASME Section VIII, Division 1 and 2
,”
ASME
Paper No. PVP2017-65858.10.1115/PVP2017-65858
24.
Li
,
K.
,
Peng
,
W.
,
Zhang
,
Z.
,
Gu
,
C.
, and
Xu
,
P.
,
2019
, “
Comparison of Design Methods for Internally Pressurized Ellipsoidal Head
,”
Chin. J. Eng. Des.
,
26
(
1
), pp.
1
7
(In Chinese).10.3785/j.issn.1006-754X.2019.01.001
25.
AQSIQ/SAC
,
2011
, “
Pressure Vessels Part 2: Materials
,”
Standards Press of China
,
Beijing, China
, Standard No. GB 150.2-2011.
26.
ASME,
2019
, “ASME Boiler and Pressure Vessel Code, Section II,”
American Society of Mechanical Engineers
,
New York
, Standard No. ASME BPVC.II-2019.
27.
Liu
,
P. F.
,
Zheng
,
J. Y.
,
Ma
,
L.
,
Miao
,
C. J.
, and
Wu
,
L. L.
,
2008
, “
Calculations of Plastic Collapse Load of Pressure Vessel Using FEA
,”
J. Zhejiang Univ. Sci. A
,
9
(
7
), pp.
900
906
.10.1631/jzus.A0820023
28.
Mokhtarian
,
K.
,
Osage
,
D. A.
,
Janelle
,
J. L.
, and
Juliano
,
T.
,
2005
, “
Design of Torispherical and Ellipsoidal Heads Subjected to Internal Pressure
,” Welding Research Council Bulletin, No. 501, Welding Research Council Inc., New York.
You do not currently have access to this content.