Abstract

The paper evaluates the performance of alternating current (AC) square waveform submerged arc welding (SAW) as a candidate technology for manufacturing thick welds for high-pressure vessels. A new mathematical formulation for calculating melting efficiency in square waveform arc welding is presented. The melting efficiency and the heat consumption are presented as a mathematical model of welding parameters, namely welding current, welding speed, current frequency, and electrode negativity (EN) ratio. The proposed approach is demonstrated through the welding of 2.25Cr-1Mo heat-resistant steel performed over a wide range of welding parameters. The investigation provides deeper insights into the interplay between process parameter, total heat consumption, and melting efficiency. The effect on flux consumption is also explained. The melting efficiency is inversely proportional to flux consumption. The welding heat does not necessarily promote the plate melting. Improper use of welding heat may lead to decreased melting efficiency and increased unwanted melting and consumption of welding flux. Compared to the conventional direct current (DC) power sources, the AC square waveform welding achieves almost the same order of melting efficiency with added advantages of better weld bead shape and flux consumption in a desirable range. The two additional parameters (frequency and EN ratio) of the AC square waveform power source provide more freedom to fine-tune the process and thereby efficiently use welding heat. The results of this investigation will be advantageous to the designers and fabricators of high-pressure vessels using AC square waveform welding.

References

1.
Zhenglong
,
L.
,
Caiwang
,
T.
,
Yanbin
,
C.
, and
Zhongshao
,
S.
,
2013
, “
Microstructure and Mechanical Properties of Fiber Laser-Metal Active Gas Hybrid Weld of X80 Pipeline Steel
,”
ASME J. Pressure Vessel Technol.
,
135
(
1
), p.
011403
.10.1115/1.4006347
2.
Tan
,
J.
,
Huang
,
W.
, and
Chao
,
Y. J.
,
2006
, “
Prediction of Fracture Appearance Transition Temperature of 2.25 Cr-1Mo Steel Used in Hot-Wall Hydrofining Reactors
,”
ASME J. Pressure Vessel Technol.
,
128
(
4
), pp.
566
571
.10.1115/1.2349569
3.
Yu
,
E.
,
Han
,
Y.
,
Xiao
,
H.
, and
Gao
,
Y.
,
2017
, “
Numerical Analysis of Microstructure and Residual Stress in the Weld Zone of Multiwire Submerged Arc Welding
,”
ASME J. Pressure Vessel Technol.
,
139
(
2
), p.
021404
.10.1115/1.4034404
4.
Sharma
,
A.
,
Arora
,
N.
, and
Mishra
,
B. K.
,
2008
, “
A Practical Approach Towards Mathematical Modeling of Deposition Rate During Twin-Wire Submerged Arc Welding
,”
Int. J. Adv. Manuf. Technol.
,
36
(
5–6
), pp.
463
474
.10.1007/s00170-006-0847-1
5.
Pedrazzo
,
G.
,
Barone
,
C. A.
, and
Rutili
,
G.
,
2009
, “
AC/DC Generators With Waveform Control: Innovation in Submerged Arc Welding
,”
Weld. Int.
,
23
(
11
), pp.
839
845
.10.1080/09507110902843255
6.
Toma
,
R. E.
,
Brandi
,
S. D.
,
Souza
,
A. C.
, and
Morais
,
Z.
,
2011
, “
Comparison Between DC (+) and Square Wave AC SAW Current Outputs to Weld AISI 304 for Low-Temperature Applications
,”
Weld. J.
,
90
(
9
), pp.
153S
160S
.http://files.aws.org/wj/supplement/wj201109_s153.pdf
7.
Cho
,
D. W.
,
Song
,
W. H.
,
Cho
,
M. H.
, and
Na
,
S. J.
,
2013
, “
Analysis of Submerged Arc Welding Process by Three-Dimensional Computational Fluid Dynamics Simulations
,”
J. Mater. Process. Technol.
,
213
(
12
), pp.
2278
2291
.10.1016/j.jmatprotec.2013.06.017
8.
Mohanty
,
U. K.
,
Sharma
,
A.
,
Nakatani
,
M.
,
Kitagawa
,
A.
,
Tanaka
,
M.
, and
Suga
,
T.
,
2018
, “
A Semi-Analytical Nonlinear Regression Approach for Weld Profile Prediction: A Case of Alternating Current Square Waveform Submerged Arc Welding of Heat Resistant Steel
,”
ASME J. Manuf. Sci. Eng.
,
140
(
11
), p.
111013
.10.1115/1.4040983
9.
Mendez
,
P. F.
,
Goett
,
G.
, and
Guest
,
S. D.
,
2015
, “
High-Speed Video of Metal Transfer in Submerged Arc Welding
,”
Weld. J.
,
94
(
10
), pp.
325 s
332 s
.https://app.aws.org/wj/supplement/WJ_2015_10_s326.pdf
10.
Pepin
,
J.
,
2009
, “
Effects of Submerged Arc Weld (SAW) Parameters on Bead Geometry and Notch-Toughness for X70 and X80 Linepipe Steels
,”
Ph.D. dissertation
,
University of Alberta
, Edmonton, AB, Canada.10.7939/R3N061
11.
Su
,
Y.
,
Hua
,
X.
, and
Wu
,
Y.
,
2013
, “
Effect of Input Current Modes on Intermetallic Layer and Mechanical Property of Aluminum–Steel Lap Joint Obtained by Gas Metal Arc Welding
,”
Mater. Sci. Eng., A
,
578
, pp.
340
345
.10.1016/j.msea.2013.04.097
12.
Kah
,
P.
,
Salminen
,
A.
, and
Martikainen
,
J.
,
2010
, “
The Effect of the Relative Location of Laser Beam With Arc in Different Hybrid Welding Processes
,”
Mechanics
,
83
(
3
), pp.
68
74
http://www.mechanika.ktu.lt/index.php/Mech/article/view/15543.
13.
Bajcer
,
B.
,
Hrženjak
,
M.
,
Pompe
,
K.
, and
Jež
,
B.
,
2006
, “
Improvement of Energy and Materials Efficiencies by Introducing Multiple-Wire Welding
,”
Metalurgija
,
46
(
1
), pp.
47
52
.https://hrcak.srce.hr/6456
14.
Unocic
,
R. R.
, and
DuPont
,
J. N.
,
2004
, “
Process Efficiency Measurements in the Laser Engineered Net Shaping Process
,”
Metall. Mater. Trans. B
,
35
(
1
), pp.
143
152
.10.1007/s11663-004-0104-7
15.
Shen
,
S.
,
Oguocha
,
I. N. A.
, and
Yannacopoulos
,
S.
,
2012
, “
Effect of Heat Input on Weld Bead Geometry of Submerged Arc Welded ASTM A709 Grade 50 Steel Joints
,”
J. Mater. Process. Technol.
,
212
(
1
), pp.
286
294
.10.1016/j.jmatprotec.2011.09.013
16.
Rodrigues
,
A.
, and
Loureiro
,
A.
,
2005
, “
Effect of Shielding Gas and Activating Flux on Weld Bead Geometry in Tungsten Inert Gas Welding of Austenitic Stainless Steels
,”
Sci. Technol. Weld. Joining
,
10
(
6
), pp.
760
765
.10.1179/174329305X68769
17.
Park
,
Y. D.
,
Kang
,
N.
,
Malene
,
S. H.
, and
Olson
,
D. L.
,
2007
, “
Effect of Exothermic Additions on Heat Generation and Arc Process Efficiency in Flux-Cored Arc Welding
,”
Met. Mater. Int.
,
13
(
6
), pp.
501
509
.10.1007/BF03027910
18.
Tušek
,
J.
, and
Suban
,
M.
,
2003
, “
High-Productivity Multiple-Wire Submerged-Arc Welding and Cladding With Metal-Powder Addition
,”
J. Mater. Process. Technol.
,
133
(
1–2
), pp.
207
213
.10.1016/S0924-0136(02)00235-2
19.
Salminen
,
A. S.
,
2003
, “
Effects of Filler Wire Feed on the Efficiency of Laser Welding
,”
First International Symposium on High-Power Laser Macroprocessing
,
International Society for Optics and Photonics
, Osaka, Japan, Vol.
4831
, pp.
263
269
.https://www.researchgate.net/publication/241399699_Effects_of_filler_wire_feed_on_the_efficiency_of_laser_welding
20.
Zhu
,
S.
,
Wang
,
Q. W.
,
Wang
,
X. M.
, and
Han
,
G. F.
,
2011
, “
Analysis on Thermal Efficiency and Softening Behavior of MIG Welding With Longitudinal Magnetic Field
,”
Adv. Mater. Res.
,
148
, pp.
326
331
.10.4028/www.scientific.net/AMR.148-149.326
21.
Walsh
,
C. A.
,
Bhadeshia
,
H. K. D. H.
,
Lau
,
A.
,
Matthias
,
B.
,
Oesterlein
,
R.
, and
Drechsel
,
J.
,
2003
, “
Characteristics of High-Power Diode–Laser Welds for Industrial Assembly
,”
J. Laser Appl.
,
15
(
2
), pp.
68
76
.10.2351/1.1536642
22.
Lee
,
C. S.
,
Chandel
,
R. S.
, and
Seow
,
H. P.
,
2000
, “
Effect of Welding Parameters on the Size of Heat Affected Zone of Submerged Arc Welding
,”
Mater. Manuf. Processes
,
15
(
5
), pp.
649
666
.10.1080/10426910008913011
23.
Achebo
,
J. I.
, and
Oghoore
,
O.
,
2012
, “
Numerical Computation of Melting Efficiency of Aluminum Alloy 5083 During CO2 Laser Welding Process
,”
Materials With Complex Behaviour II
,
Springer
,
Berlin
, pp.
601
617
.
24.
Chandel
,
R. S.
,
1990
, “
Electrode Melting and Plate Melting Efficiencies of Submerged Arc Welding and Gas Metal Arc Welding
,”
Mater. Sci. Technol.
,
6
(
8
), pp.
772
777
.10.1179/mst.1990.6.8.772
25.
Niles
,
R. W.
, and
Jackson
,
C. E.
,
1975
, “
Weld Thermal Efficiency of the GTAW Process
,”
Weld. J.
,
54
(
1
), p.
25
. http://files.aws.org/wj/supplement/WJ_1975_01_s25.pdf
26.
King
,
B.
,
2005
, “
Welding and Post Weld Heat Treatment of 2.25% Cr-1% Mo Steel
,”
Master thesis
, Faculty of Engineering, University of Wollonggong, Wollongong, Australia, pp.
9
40
.https://ro.uow.edu.au/theses/479/
27.
Dahiwale
,
N. B.
,
Kapil
,
A.
, and
Sharma
,
A.
,
2015
, “
Integrated Model for Assessment of Electromagnetic Force Field Due to Arc Welding
,”
Sci. Technol. Weld. Joining
,
20
(
7
), pp.
563
570
.10.1179/1362171815Y.0000000039
28.
Campbell
,
F. C.
, ed.,
2011
, Joining:
Understanding the Basics
,
ASM International
, Materials Park, Novelty, OH.
29.
Sharma
,
A.
,
2018
, “
A Fundamental Study on Qualitatively Viable Sustainable Welding Process Maps
,”
J. Manuf. Syst.
,
46
, pp.
221
230
10.1016/j.jmsy.2018.01.002
You do not currently have access to this content.