Abstract

Stress rupture factors and weld strength reduction factors for Grade 91 steel weldments in the codes and literatures have been reviewed. Stress rupture factors for weld metals proposed for code case N-47 in the mid 1980's was defined as a ratio of average rupture strength of the deposited filler metal to the average rupture strength of the base metal. Remarkable drop in creep rupture strength of weldments is significant issue of Grade 91, especially in the low-stress and long-term regime. A premature failure of Grade 91 steel weldments in the long-term, however, is caused by type IV failure which takes place in the fine grain heat affected zone (FG-HAZ), rather than fracture in the deposited weld metal. The stress rupture factor of the Grade 91 steel, therefore, was based on the creep rupture strength of cross weld test specimens. Creep rupture data of Grade 91 steel weldments reported in the publication of ASME STP-PT-077 were integrated with the creep rupture data collected in Japan and used for this study. Time- and temperature-dependent stress rupture factors for Grade 91 steel have been evaluated based on the consolidated database as a ratio of average creep rupture strength of cross weld test specimen to the average creep rupture strength of base metal.

References

1.
Foldyna
,
V.
,
Kuboň
,
Z.
,
Jakobová
,
A.
, and
Vodárek
,
V.
,
1997
, “
Development of Advanced High Chromium Ferritic Steels
,”
Microstructural Development and Stability in High Chromium Ferritic Power Plant Steels
,
A.
Strang
and
D. J.
Gooch
, eds.,
The Institute of Materials
, CRC Press, Boca Raton, FL, pp.
73
92
.
2.
Strang
,
A.
, and
Vodarek
,
V.
,
1998
, “
Microstructural Stability of Creep Resistant Martensitic 12%Cr Steels
,”
Microstructural Stability of Creep Resistant Alloys for High Temperature Plant Applications
,
The Institute of Materials
,
London
, pp.
117
133
.
3.
Kimura
,
K.
,
Kushima
,
H.
, and
Abe, F.
,
1999
, “
Heterogeneous Changes in Microstructure and Degradation Behaviour of 9Cr-1Mo-V-Nb Steel During Long Term Creep
,”
Key Eng. Mater.
,
171–174
, pp.
483
490
.10.4028/www.scientific.net/KEM.171-174.483
4.
Brett
,
S. J.
,
Oates
,
D. L.
, and
Johnston
,
C.
,
2005
, “
In-Service Type IV Cracking in a Modified 9Cr (Grade 91) Header
,”
Creep and Fracture in High Temperature Components—Design and Life Assessment Issues
,
DEStech Publications
,
Lancaster, PA
, pp.
563
572
. https://www.scribd.com/document/358315556/In-Serice-Type-IV-Cracking-in-a-Modified-9Cr-Grade-91-Header-OMMI
5.
Yang
,
B.
,
Xuan
,
F. Z.
, and
Liu
,
X. P.
,
2017
, “
Heterogeneous Creep Behavior of a CrMoV Multi-Pass Weld Metal
,”
Mater. Sci. Eng., A
,
690
, pp.
6
15
.10.1016/j.msea.2017.02.084
6.
Watanabe
,
T.
,
Tabuchi
,
M.
,
Yamazaki
,
M.
,
Hongo
,
H.
, and
Tanabe
,
T.
,
2006
, “
Creep Damage Evaluation of 9Cr-1Mo-V-Nb Steel Welded Joints Showing Type IV Fracture
,”
Int. J. Pressure Vessel Piping
,
83
(
1
), pp.
63
71
.10.1016/j.ijpvp.2005.09.004
7.
Xuan
,
F. Z.
,
Tu
,
S. T.
, and
Wang
,
Z.
,
2006
, “
Time-Dependent Fracture and Defect Assessment of Welded Structures at High Temperature
,”
 ASME J. Pressure Vessel Technol.,
128
(
4
), pp.
556
565
.https://doi.org/10.1115/1.2349567
8.
Kimura
,
K.
,
2005
, “
Assessment of Long-Term Creep Strength and Review of Allowable Stress of High Cr Ferritic Creep Resistant Steels
,”
ASME
Paper No. PVP2005-71039.10.1115/PVP2005-71039
9.
Cipolla
,
L.
, and
Gabrel
,
J.
,
2005
, “
New Creep Rupture Assessment of Grade 91
,”
Proceedings of the First International Conference Super High Strength Steels
, Rome, Italy, Nov. 2–4. https://www.phase-trans.msm.cam.ac.uk/2005/LINK/162.pdf
10.
Bendick
,
W.
,
Cipolla
,
L.
,
Gabrel
,
J.
, and
Hald
,
J.
,
2009
, “
New ECCC Assessment of Creep Rupture Strength for Steel Grade X10CrMoVNb9-1 (Grade 91)
,”
Proceedings of the ECCC Creep Conference
, Zurich, Switzerland, Apr. 21–23, pp.
56
67
.10.1016/j.ijpvp.2010.03.010
11.
Kimura
,
K.
, and
Takahashi
,
Y.
,
2012
, “
Evaluation of Long-Term Creep Strength of ASME Grades 91, 92, and 122 Type Steels
,”
ASME
Paper No. PVP2012-78323.10.1115/PVP2012-78323
12.
Kimura
,
K.
, and
Yaguchi
,
M.
,
2016
, “
Re-Evaluation of Long-Term Creep Strength of Base Metal of ASME Grade 91 Type Steel
,”
ASME
Paper No. PVP2016-63355.10.1115/PVP2016-63355
13.
Tabuchi
,
M.
, and
Takahashi
,
Y.
,
2006
, “
Evaluation of Creep Strength Reduction Factors for Welded Joints of Modified 9Cr-1Mo Steel (P91)
,”
ASME
Paper No. PVP2006-ICPVT-11-93350.10.1115/PVP2006-ICPVT-11-93350
14.
Yaguchi
,
M.
,
Matsumura
,
T.
, and
Hoshino
,
K.
,
2012
, “
Evaluation of Long-Term Creep Strength of Welded Joints of ASME Grades 91, 92 and 122 Type Steels
,”
ASME
Paper No. PVP2012-78393.10.1115/PVP2012-78393
15.
Yaguchi
,
M.
,
Nakamura
,
K.
, and
Nakahashi
,
S.
,
2016
, “
Re-Evaluation of Long-Term Creep Strength of Welded Joint of ASME Grade 91 Type Steel
,”
ASME
Paper No. PVP2016-63316.10.1115/PVP2016-63316
16.
Shingledecker
,
J.
,
Dogan
,
B.
,
Foulds
,
J.
,
Swindeman
,
R.
,
Marriott
,
D.
, and
Carter
,
P.
,
2017
, “
Development of Weld Strength Reduction Factors and Weld Joint Influence Factors for Service in the Creep Regime and Application to ASME Codes
,” ASME Standards Technology, New York, Standard No. STP-PT-077.
17.
Brinkman
,
C. R.
,
Alexander
,
D. J.
, and
Maziasz
,
P. J.
,
1991
, “
Modified 9Cr-1Mo Steel for Advanced Steam Generator Applications
,”
ASME/IEEE Power Generation Conference
, Boston, MA, Oct. 21–25, Report No.
CONF-901026-1
.https://inis.iaea.org/search/search.aspx?orig_q=RN:21089573
18.
Kimura
,
K.
,
2018
, “
Evaluation of Stress Rupture Factors for Grade 91 Weldments
,”
ASME
Paper No. PVP2018-84572.10.1115/PVP2018-84572
19.
Yoshida
,
K.
,
Nakai
,
H.
, and
Fukuda
,
M.
,
2007
, “
Regulatory Review Results on Allowable Tensile Stress Values of Creep Strength Enhanced Ferritic Steels
,”
ASME
Paper No. PVP2007-26512.10.1115/PVP2007-26512
20.
Kimura
,
K.
,
Sawada
,
K.
,
Kubo
,
K.
, and
Kushima
,
H.
,
2004
, “
Influence of Stress on Degradation and Life Prediction of High Strength Ferritic Steels
,”
ASME
Paper No. PVP2004-2566.10.1115/PVP2004-2566
21.
ASME
,
2019
, “ASME Boiler and Pressure Vessel Code, Section I, PW-39,”
American Society of Mechanical Engineers
,
New York
.
22.
Kimura
,
K.
,
2017
, “
Evaluation and Extension of Allowable Stress Values for Gr.91
,”
ASME
Paper No. PVP2017-65522.10.1115/PVP2017-65522
23.
METI
,
2019
, “
The Interpretation for the Technical Standard for Thermal Power Plant
,”
The Ministry of Economy
,
Trade and Industry (METI)
, Tokyo, Japan.
24.
ASME
,
2019
, “ASME Boiler and Pressure Vessel Code, Section II, Part-D,”
American Society of Mechanical Engineers
,
New York
.
You do not currently have access to this content.