Abstract

Hydrogen uptake, tensile, and fatigue properties of a precipitation-hardened martensitic stainless steel with a newly developed coating (alumina/aluminum/Fe–Al) were presented. The developed coating had an excellent resistance to hydrogen entry in 100-MPa hydrogen gas at 270 °C. Measurements of bulk and local hydrogen by thermal desorption analysis and secondary-ion mass spectrometry (SIMS) suggested that the excellent resistance was attributed to the reduction in permeation areas by interfacial hydrogen trapping between the aluminum and Fe–Al layers. Tensile tests of a smooth, round-bar specimen, and fatigue tests of a circumferentially notched specimen after exposure to 100-MPa hydrogen gas at 270 °C were performed in air at room temperature (RT). These properties of the coated specimens were not degraded by hydrogen exposure, whereas those of the noncoated specimens were significantly degraded. Hydrogen-pressure cycle tests of coated, tubular specimens with an inner notch in 95-MPa hydrogen gas at 85 °C also demonstrated that the fatigue life was improved by the coating.

References

1.
Nagumo
,
M.
,
2016
,
Fundamentals of Hydrogen Embrittlement
,
Springer
,
Singapore
.
2.
Murakami
,
Y.
,
Matsuoka
,
S.
,
Kondo
,
Y.
, and
Nishimura
,
S.
,
2012
,
Mechanism of Hydrogen Embrittlement and Guide for Fatigue Design
,
Yokendo
,
Tokyo, Japan
.
3.
Gangloff
,
R. P.
, and
Somerday
,
B. P.
,
2012
,
Gaseous Hydrogen Embrittlement of Materials in Energy Technologies
,
Woodhead Publishing
,
Cambridge, UK
.
4.
Matsuo
,
T.
,
Yamabe
,
J.
, and
Matsuoka
,
S.
,
2014
, “
Effects of Hydrogen on Tensile Properties and Fracture Surface Morphologies of Type 316 L Stainless Steel
,”
Int. J. Hydrogen Energy
,
39
(
7
), pp.
3542
3551
.10.1016/j.ijhydene.2013.12.099
5.
San Marchi
,
C.
,
Somerday
,
B. P.
, and
Nibur
,
K. A.
,
2014
, “
Development of Methods for Evaluating Hydrogen Compatibility and Suitability
,”
Int. J. Hydrogen Energy
,
39
(
35
), pp.
20434
20439
.10.1016/j.ijhydene.2014.03.234
6.
Matsunaga
,
H.
,
Yoshikawa
,
M.
,
Kondo
,
R.
,
Yamabe
,
J.
, and
Matsuoka
,
S.
,
2015
, “
Slow Strain Rate Tensile and Fatigue Properties of Cr-Mo and Carbon Steels in a 115 MPa Hydrogen Gas Atmosphere
,”
Int. J. Hydrogen Energy
,
40
(
16
), pp.
5739
5748
.10.1016/j.ijhydene.2015.02.098
7.
Yamabe
,
J.
,
Itoga
,
H.
,
Awane
,
T.
,
Matsuo
,
T.
,
Matsunaga
,
H.
, and
Matsuoka
,
S.
,
2016
, “
Pressure Cycle Testing of Cr–Mo Steel Pressure Vessels Subjected to Gaseous Hydrogen
,”
ASME J. Pressure Vessel Technol.
,
183
(
1
), p.
011401
.10.1115/1.4030086
8.
Matsuoka
,
S.
,
Yamabe
,
J.
, and
Matsunaga
,
H.
,
2016
, “
Criteria for Determining Hydrogen Compatibility and the Mechanisms for Hydrogen-Assisted, Surface Crack Growth in Austenitic Stainless Steels
,”
Eng. Fract. Mech.
,
153
, pp.
103
127
.10.1016/j.engfracmech.2015.12.023
9.
Yamabe
,
J.
,
Matsunaga
,
H.
,
Furuya
,
Y.
,
Hamada
,
S.
,
Itoga
,
H.
,
Yoshikawa
,
M.
,
Takeuchi
,
E.
, and
Matsuoka
,
S.
,
2015
, “
Qualification of Chromium–Molybdenum Steel Based on the Safety Factor Multiplier Method in CHMC1-2014
,”
Int. J. Hydrogen Energy
,
40
(
1
), pp.
719
728
.10.1016/j.ijhydene.2014.10.114
10.
Verghese
,
K.
,
Zumwalt
,
L. R.
,
Feng
,
C. P.
, and
Elleman
,
T. S.
,
1979
, “
Hydrogen Permeation Through Non-Metallic Solids
,”
J. Nucl. Mater.
,
85
(
6
), pp.
1161
1164
.10.1016/0022-3115(79)90418-5
11.
Hollenberg
,
G. W.
,
Simonen
,
E. P.
,
Kalinin
,
G.
, and
Terlain
,
A.
,
1995
, “
Tritium/Hydrogen Barrier Development
,”
Fusion Eng. Des.
,
28
(
1–2
), pp.
190
208
.10.1016/0920-3796(94)00377-J
12.
Fowler
,
J. D.
,
Chandra
,
D.
,
Elleman
,
T. S.
,
Payne
,
A. W.
, and
Verghese
,
K.
,
1977
, “
Tritium Diffusion in Al2O3 and BeO
,”
J. Am. Ceram. Soc.
,
60
(
3–4
), pp.
155
161
.10.1111/j.1151-2916.1977.tb15493.x
13.
Roberts
,
R. M.
,
Elleman
,
T. S.
,
Iii
,
H. P.
, and
Verghese
,
K.
,
1979
, “
Hydrogen Permeability of Sintered Aluminum Oxide
,”
J. Am. Ceram. Soc.
,
62
(
9–10
), pp.
495
499
.10.1111/j.1151-2916.1979.tb19114.x
14.
Sokhi
,
R. S.
,
Forcey
,
K. S.
,
Ross
,
D. K.
, and
Earwaker
,
L. G.
,
1989
, “
Investigation of Aluminum Steel as a Barrier to Tritium Using Accelerator-Based and Hydrogen Permeation Techniques
,”
Nucl. Instrum. Methods Phys. Res.
,
B40/41
(
2
), pp.
780
784
.10.1016/0168-583X(89)90477-1
15.
Forcey
,
K. S.
,
Ross
,
D. K.
, and
Wu
,
C. H.
,
1991
, “
The Formation of Hydrogen Permeation Barriers on Steels by Alumnising
,”
J. Nucl. Mater.
,
182
, pp.
36
51
.10.1016/0022-3115(91)90413-2
16.
Perujo
,
A.
,
Forcey
,
K. S.
, and
Sample
,
T.
,
1993
, “
Reduction of Dueterium Permeation Through DIN 1.4914 Stainless Steel (MANET) by Plasma-Spray Deposited Aluminum
,”
J. Nucl. Mater.
,
207
, pp.
86
91
.10.1016/0022-3115(93)90249-X
17.
Fukai
,
T.
, and
Matsumoto
,
K.
,
1994
, “
Surface Modification Effects on Hydrogen Permeation in High-Temperature, High-Pressure, Hydrogen-Hydrogen Sulfide Environment
,”
Corrosion
,
50
(
7
), pp.
522
530
.10.5006/1.3294353
18.
Yamada-Takamura
,
Y.
,
Koch
,
F.
,
Maier
,
H.
, and
Bolt
,
H.
,
2002
, “
Hydrogen Permeation Barrier Performance Characterization of Vapor Deposited Amorphous Aluminum Oxide Films Using Coloration of Tungsten Oxide
,”
Surf. Coat. Technol.
,
153
(
2–3
), pp.
114
118
.10.1016/S0257-8972(01)01697-8
19.
Levchuk
,
D.
,
Koch
,
F.
,
Maier
,
H.
, and
Bolt
,
H.
,
2004
, “
Deuterium Permeation Through Eufoer and α-Aluminum Coated Eurofer
,”
J. Nucl. Mater.
,
328
(
2–3
), pp.
103
106
.10.1016/j.jnucmat.2004.03.008
20.
Korinko
,
P.
,
Adams
,
T. M.
, and
Creech
,
G.
,
2005
, “
Hydrogen Permeation Resistant Coatings
,” Savannah River National Laboratory, Aiken, SC, Technical Report No.
WSRC–MS–2005–00155
.https://www.researchgate.net/publication/236472802_Hydrogen_Permeation_Resistant_Coatings
21.
Caskey
,
G. R.
, Jr
,
1974
, “
Diffusion of Tritium in Rutile (TiO2)
,”
Mater. Sci. Eng.
,
14
(
2
), pp.
109
114
.10.1016/0025-5416(74)90003-2
22.
Swansiger
,
W. A.
,
Musket
,
R. G.
,
Weirick
,
L. J.
, and
Bauer
,
W.
,
1974
, “
Deuterium Permeation Through 309S Stainless Steel With Thin Characterized Oxides
,”
J. Nucl. Mater.
,
53
, pp.
307
312
.10.1016/0022-3115(74)90262-1
23.
Coleman
,
D. H.
,
Popov
,
B. N.
, and
White
,
R. E.
,
1998
, “
Hydrogen Permeation Inhibition by Thin Layer Zn–Ni Alloy Electrodeposition
,”
J. Appl. Electrochem.
,
28
, pp.
889
894
.10.1023/A:1003408230951
24.
Hillier
,
E. M. K.
, and
Robinson
,
M. J.
,
2004
, “
Hydrogen Embrittlement of High Strength Steel Electroplated With Zinc–Cobalt Alloys
,”
Corros. Sci.
,
46
(
3
), pp.
715
727
.10.1016/S0010-938X(03)00180-X
25.
Solmaz
,
R.
, and
Kardaş
,
G.
,
2007
, “
Hydrogen Evolution and Corrosion Performance of NiZn Coating
,”
Energy Conv. Manag.
,
48
(
2
), pp.
583
591
.10.1016/j.enconman.2006.06.004
26.
Figueroa
,
D.
, and
Robinson
,
M. J.
,
2008
, “
The Effect of Sacrificial Coatings on Hydrogen Embrittlement and Re-Embrittlement of Ultra High Strength Steels
,”
Corros. Sci.
,
50
(
4
), pp.
1066
1079
.10.1016/j.corsci.2007.11.023
27.
Sriraman
,
K. R.
,
Brahimi
,
S.
,
Szpunar
,
J. A.
, and
Yue
,
S.
,
2013
, “
Hydrogen Embrittlement of Zn-, Zn-Ni-, and Cd-Coated High Strength Steel
,”
J. Appl. Electrochem.
,
43
(
4
), pp.
441
451
.10.1007/s10800-013-0529-2
28.
Boiadjieva
,
T.
,
Mirkova
,
L.
,
Kronberger
,
H.
,
Steck
,
T.
, and
Monev
,
M.
,
2013
, “
Hydrogen Permeation Through Steel Electroplated With Zn or Zn–Cr Coatings
,”
Electrochim. Acta
,
114
, pp.
790
798
.10.1016/j.electacta.2013.06.010
29.
Solmaz
,
R.
,
Kardaş
,
G.
,
Culha
,
M.
,
Yazıcı
,
B.
, and
Erbil
,
M.
,
2008
, “
Investigation of Adsorption and Inhibitive Effect of 2-Mercaptothiazoline on Corrosion of Mild Steel in Hydrochloric Acid Media
,”
Electrochim. Acta
,
53
(
20
), pp.
5941
5952
.10.1016/j.electacta.2008.03.055
30.
Michler
,
T.
, and
Naumann
,
J.
,
2009
, “
Coatings to Reduce Hydrogen Environment Embrittlement of 304 Austenitic Stainless Steel
,”
Surf. Coat. Technol.
,
203
(
13
), pp.
1819
1828
.10.1016/j.surfcoat.2009.01.013
31.
Murray
,
G. T.
,
Bouffard
,
J. P.
, and
Briggs
,
D.
,
1987
, “
Retardation of Hydrogen Embrittlement of 17-4 PH Stainless Steels by Nonmetallic Surface Layers
,”
Metall. Trans.
,
A10
, pp.
162
164
.10.1007/BF02646236
32.
Song
,
R. G.
,
2003
, “
Hydrogen Permeation Resistance of Plasma-Sprayed Al2O3 and Al2O3–13 wt.%TiO2 Ceramic Coatings on Austenitic Stainless Steel
,”
Surf. Coat. Technol.
,
168
(
2–3
), pp.
191
194
.10.1016/S0257-8972(03)00002-1
33.
Louthan
,
M. R.
, Jr
,
Caskey
,
G. R.
, Jr
,
Donovan
,
J. A.
, and
Rawl
,
D. E.
, Jr
,
1972
, “
Hydrogen Embrittlement of Metals
,”
Mater. Sci. Eng.
,
10
, pp.
357
368
.10.1016/0025-5416(72)90109-7
34.
Yamabe
,
J.
,
Matsuoka
,
S.
, and
Murakami
,
Y.
,
2013
, “
Surface Coating With a High Resistance to Hydrogen Entry Under High-Pressure Hydrogen-Gas Environment
,”
Int. J. Hydrogen Energy
,
38
(
24
), pp.
10141
10154
.10.1016/j.ijhydene.2013.05.152
35.
Yamabe
,
J.
,
Awane
,
T.
, and
Matsuoka
,
S.
,
2015
, “
Elucidating the Hydrogen-Entry-Obstruction Mechanism of a Newly Developed Aluminum-Based Coating in High-Pressure Gaseous Hydrogen
,”
Int. J. Hydrogen Energy
,
40
(
32
), pp.
10329
10339
.10.1016/j.ijhydene.2015.06.023
36.
Demarez
,
A.
,
Hock
,
A. G.
, and
Meunier
,
F. A.
,
1954
, “
Diffusion of Hydrogen in Mild Steel
,”
Acta Metall.
,
2
(
2
), pp.
214
223
.10.1016/0001-6160(54)90162-5
37.
Yamabe
,
J.
,
Awane
,
T.
, and
Matsuoka
,
S.
,
2015
, “
Investigation of Hydrogen Transport Behavior of Various Low-Alloy Steels With High-Pressure Hydrogen Gas
,”
Int. J. Hydrogen Energy
,
40
(
34
), pp.
11075
110861
.10.1016/j.ijhydene.2015.07.006
38.
Yamabe
,
J.
,
Takakuwa
,
O.
,
Matsunaga
,
H.
,
Itoga
,
H.
, and
Matsuoka
,
S.
,
2017
, “
Hydrogen Diffusivity and Tensile-Ductility Loss of Solution-Treated Austenitic Stainless Steels With External and Internal Hydrogen
,”
Int. J. Hydrogen Energy
,
42
(
18
), pp.
13289
13299
.10.1016/j.ijhydene.2017.04.055
39.
Chiang
,
W. C.
,
Pu
,
C. C.
,
Yu
,
B. L.
, and
Wu
,
J. K.
,
2003
, “
Hydrogen Susceptibility of 17-4 PH Stainless Steel
,”
Mater Lett.
,
57
(
16–17
), pp.
2485
2488
.10.1016/S0167-577X(02)01298-3
40.
Marchi
,
C.
,
Somerday
,
B.
, and
Robinson
,
S.
,
2007
, “
Permeability, Solubility and Diffusivity of Hydrogen Isotopes in Stainless Steels at High Gas Pressures
,”
Int. J. Hydrogen Energy
,
32
(
1
), pp.
100
116
.10.1016/j.ijhydene.2006.05.008
41.
Matsuo
,
T.
,
Homma
,
N.
,
Matsuoka
,
S.
, and
Murakami
,
Y.
,
2008
, “
Effect of Hydrogen and Prestrain on Tensile Properties of Carbon Steel SGP (0.078 C–0.012 Si–0.35 Mn, Mass %) for 0.1 MPa Hydrogen Pipelines
,”
Trans. Jpn. Soc. Mech. Eng.
,
A74
, pp.
1164
1173
.10.1299/kikaia.74.1164
42.
Murakami
,
Y.
, and
Matsuoka
,
S.
,
2010
, “
Effect of Hydrogen on Fatigue Crack Growth of Metals
,”
Eng. Fract. Mech.
,
77
(
11
), pp.
1926
1940
.10.1016/j.engfracmech.2010.04.012
43.
Sofronis
,
P.
, and
McMeeking
,
R. M.
,
1989
, “
Numerical Analysis of Hydrogen Transport Near a blunting crack tip
,”
J. Mech. Phys. Solids
,
37
(
3
), pp.
317
350
.10.1016/0022-5096(89)90002-1
44.
Birnbaum
,
H. K.
, and
Sofronis
,
P.
,
1994
, “
Hydrogen-Enhanced Localized Plasticity: A Mechanism for Hydrogen-Related Fracture
,”
Mater. Sci. Eng.
,
A176
, pp.
191
202
.10.1016/0921-5093(94)90975-X
You do not currently have access to this content.