Abstract

Stress analysis by a finite element analysis program sometimes causes singularities in hot-spots. In a failure assessment, the structural stress, and membrane and bending stress should be determined in a highly stressed spot (hot-spot). When the structural stress at a hot-spot is disturbed by singularities, the stress result not only diverges, by reducing the element size, but also shows a decreased value compared to nominal stress because the stress is substituted into the von Mises equivalent stress equation. In the three-dimensional (3D) finite element model, it is hard to avoid the singularity problem at hot-spots particularly when it is subjected to loads in three axial directions. For the alternative, this study converts the 3D model into two-dimensional (2D) plane models to remove the singularity and to obtain reasonable structural stress values excluding the peak stress. The structural stress-estimating approaches applied in the 2D model were examined for whether they could avoid the structural stress reduction near the hot-spot with mesh insensitivity. The implemented approaches are stress linearization, single point away method, stress equilibrium, stress extrapolation, and the nodal force method. The results computed by each approach are compared and reconstructed to 3D stress by the Cauchy stress matrix. This study found that the difference in structural stress in 2D was eliminated after the 3D stress reconstruction.

References

1.
Kroenke
,
W. C.
,
1974
, “
Classification of Finite Element Stresses According to ASME Section III Stress Categories
,”
Pressure Vessels Piping Conference
, Miami Beach, FL, June 24–28, pp.
107
140
.
2.
Gordon
,
J. L.
,
1976
, “
Outcur: An Automated Evaluation of Two-Dimensional Finite Element Stresses According to ASME Section III Stress Requirements
,”
ASME
Paper No. 76-WA/PVP-16.10.1115/76-WA/PVP-16
3.
ASME
,
2017
,
BPVC.Section VIII.Division 2 Alternative Rules
,
The American Society of Mechanical Engineers
,
New York
, pp.
10016
5990
.
4.
Kalnins
,
A.
,
2008
, “
Stress Classification Lines Straight Through Singularities
,”
ASME
Paper No. PVP2008-61746.10.1115/PVP2008-61746
5.
Trieglaff, R., Beckert
,
M.
, Rudolph, J., and
Hauser
,
F.
,
2017
, “
Comparison of Methods for Structural Stress Determination According to EN 13445-3 ANNEX NA
,”
ASME
Paper No. PVP2017-66112.10.1115/PVP2017-66112
6.
Strzelczyk
,
A. T.
, and
Stojakovic
,
M.
,
2013
, “
Simplified Stress Linearization Method, Maintaining Accuracy
,”
ASME J. Pressure Vessel Technol.
,
135
(
5
), p.
051205
.10.1115/1.4024453
7.
Hossain
,
M. M.
,
Reinhardt
,
W. D.
, and
Seshadri
,
R.
,
2009
, “
Simplified Stress Categorization Using a Single Linear Elastic Analysis
,”
ASME J. Pressure Vessel Technol.
,
131
(
6
), p.
061204
.10.1115/1.4000199
8.
Hechmer
,
J. L.
, and
Hollinger
,
G. L.
,
1991
, “
The ASME Code and 3D Stress Evaluation
,”
ASME J. Pressure Vessel Technol.
,
113
(
4
), pp.
481
487
.10.1115/1.2928784
9.
Hechmer
,
J. L.
, and
Hollinger
,
G. L.
,
1998
,
3D Stress Criteria Guidelines for Application
, Vol.
429
,
Welding Research Council
,
New York
.
10.
Niemi
,
E.
,
Fricke
,
W.
, and
Maddox
,
S. J.
,
2006
,
Fatigue Analysis of Welded Components: Designer’s Guide to the Structural Hot-Spot Stress Approach
,
IIW International Institute of Welding, Woodhead
,
Cambridge, UK
.
11.
Dong
,
P.
,
2001
, “
A Structural Stress Definition and Numerical Implementation for Fatigue Analysis of Welded Joints
,”
Int. J. Fatigue
,
23
(
10
), pp.
865
876
.10.1016/S0142-1123(01)00055-X
12.
API/ASME
,
2016
,
API 579-1/ASME FFS-1, Fitness-For-Service
,
API Publishing Services
,
Washington, DC
.
13.
Haibach, E.
, 1968, “Die Schwingfestigkeit von Schweißverbindungen aus der Sicht einer örtlichen Beanspruchungsmessung (The fatigue strength of welded joints considered based on local stress measurement),” Fraunhofer-Inst. für Betriebsfestigkeit, Darmstadt, Germany, LBF Report No. FB77.
14.
Dassault Systemes
,
2017
, ABAQUS, Dassault Systemes, Providence, RI.
15.
Korea Hydro & Nuclear Power Co
,
2014
, “
Design Control Document
,” Korea Hydro & Nuclear Power, Co., Gyeongju-si, South Korea, Report No. APR 1400.
16.
ASME
,
2017
, “
BPVC.Section II. Materials Part D-Properties
,” The American Society of Mechanical Engineers, New York, pp.
10016
5990
.
17.
Mukhtar
,
F. M.
, and
Al-Gahtani
,
H. J.
,
2017
, “
Design-Focused Stress Analysis of Cylindrical Pressure Vessels Intersected by Small-Diameter Nozzles
,”
ASME J. Pressure Vessel Technol.
,
139
(
2
), p.
021205
.10.1115/1.4033598
18.
Kazemi
,
A.
, and
Nassar
,
S. A.
,
2018
, “
Principal Stress-Based Equation for Multi-Axial Fatigue Analysis of Preloaded Threaded Fasteners
,”
ASME J. Pressure Vessel Technol.
,
140
(
2
), p.
021405
.10.1115/1.4039124
19.
Jaćimović
,
N.
,
2018
, “
Analysis of Piping Stress Intensification Factors Based on Numerical Models
,”
Int. J. Pressure Vessel. Piping
,
163
, pp.
8
14.
10.1016/j.ijpvp.2018.03.009
20.
Kushan
,
D. S.
,
Sanyal
,
S.
, and
Bhowmick
,
S.
,
2018
, “
Parametric Study of Interaction Effect Between Closely Spaced Nozzles in a Thin Cylindrical Pressure Vessel
,”
Int. J. Pressure Vessel. Piping
,
165
, pp.
34
42
.10.1016/j.ijpvp.2018.05.009
21.
Lu
,
M.-W.
,
Chen
,
Y.
, and
Li
,
J.-G.
,
2000
, “
Two-Step Approach of Stress Classification and Primary Structure Method
,”
ASME J. Pressure Vessel Technol.
,
122
(
1
), pp.
2
8
.10.1115/1.556139
22.
Hollinger
,
G.
, and
Hechmer
,
J.
,
2000
, “
Three-Dimensional Stress Criteria—Summary of the PVRC Project
,”
ASME J. Pressure Vessel Technol.
,
122
(
1
), pp.
105
109
.10.1115/1.556157
23.
Strzelczyk
,
A. T.
, and
Ho
,
S. S.
,
2007
, “
Evaluation of ‘ Linearized’ Stresses Without Linearization
,”
ASME
Paper No. PVP2007-26357.
24.
Hélénon
,
F.
,
Wisnom
,
M. R.
,
Hallett
,
S. R.
, and
Allegri
,
G.
,
2010
, “
An Approach for Dealing With High Local Stresses in Finite Element Analyses
,”
Compos. Part A Appl. Sci. Manuf.
,
41
(
9
), pp.
1156
1163
.10.1016/j.compositesa.2010.04.014
25.
Rother
,
K.
, and
Fricke
,
W.
,
2016
, “
Effective Notch Stress Approach for Welds Having Low Stress Concentration
,”
Int. J. Pressure Vessel. Piping
,
147
, pp.
12
20
.10.1016/j.ijpvp.2016.09.008
26.
Muscat
,
M.
,
Degiorgio
,
K.
, and
Wood
,
J.
,
2009
, “
Comparison Between Different Approaches for the Evaluation of the Hot Spot Structural Stress in Welded Pressure Vessel Components
,”
ASME Paper No. PVP2009-77139.
27.
Pedersen
,
M. M.
,
2016
, “
Multiaxial Fatigue Assessment of Welded Joints Using the Notch Stress Approach
,”
Int. J. Fatigue
,
83
, pp.
269
279
.10.1016/j.ijfatigue.2015.10.021
28.
Mackenzie
,
D.
,
2017
, “
Stress Linearization Concepts and Restrictions in Elastic Design the ASME Boiler and Pressure Vessel Code Section
,”
ASME
Paper No. PVP2017-65678.10.1115/PVP2017-65678
29.
ASME
,
2015
,
BPVC.Section III. Rules for Construction of Nuclear Facility Components, Division 1 -Subsection NF
,
American Society of Mechanical Engineers
,
New York
, pp.
10016
15990
.
30.
Grant
,
R. J.
,
Lorenzo
,
M.
, and
Smart
,
J.
,
2007
, “
The Effect of Poisson’s Ratio on Stress Concentrations
,”
J. Strain Anal. Eng. Des.
,
42
(
2
), pp.
95
104
.10.1243/03093247JSA205
31.
Kyuba
,
H.
, and
Dong
,
P.
,
2005
, “
Equilibrium-Equivalent Structural Stress Approach to Fatigue Analysis of a Rectangular Hollow Section Joint
,”
Int. J. Fatigue
,
27
(
1
), pp.
85
94
.10.1016/j.ijfatigue.2004.05.008
You do not currently have access to this content.