Abstract

Based on the multi-axial fatigue life prediction model presented recently by the authors, in this note, a fatigue limit prediction equation for metallic materials under multi-axial loading is proposed. In the multi-axial fatigue life prediction model, the wildly used von Mises equivalent stress is taken as an equivalent fatigue mechanical quantity, and the multi-axial fatigue life prediction equation has the invariance of mathematical equation form. By applying the multi-axial fatigue life prediction equation without mean stress effect to fatigue limit case, a simple fatigue limit prediction equation can be obtained. By using a large number of experimental data of metallic materials reported in literature, it has been proven that the fatigue limit prediction equation is not only simple in computation but also high in accuracy.

References

1.
Liu
,
B. W.
, and
Yan
,
X. Q.
,
2019
, “
A New Model of Multiaxial Fatigue Life Prediction With Influence of Different Mean Stresses
,”
Int. J. Damage Mech.
,
28
(
9
), pp.
1323
1343
.10.1177/1056789518824396
2.
Rice
,
J. R.
,
1968
, “
A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks
,”
ASME J. Appl. Mech.
,
35
(
2
), pp.
379
386
.10.1115/1.3601206
3.
Susmel
,
L.
,
2009
,
Multiaxial Notch Fatigue, From Nominal to Stress/Strain Quantities
,
Woodhead Publishing Limited, CRC Press
,
Boca Raton, FL
.
4.
Gough
,
H. J.
,
1949
, “
Engineering Steels Under Combined Cyclic and Static Stresses
,”
Proc. Inst. Mech. Eng.
,
160
(
1
), pp.
417
440
.10.1243/PIME_PROC_1949_160_040_02
5.
Nishihara, T., and Kawamoto, M.,
1947
, “
The Strength of Metals Under Combined Alternating Bending and Torsion With Phase Difference
,”
Trans. Jpn, Soc. Mech. Eng.
,
12
(42), pp. 44–53.
6.
Kitaioka
,
S.
,
Chen
,
J.
, and
Seika
,
M.
,
1986
, “
The Threshold of Micro Crack Propagation Under Mixed Mode
,”
Bull. Jpn. Soc. Mech. Eng.
,
29
, pp.
214
237
. 10.1299/jsme1958.29.651
7.
Frith
,
P. H.
,
1956
, “
Fatigue of Wrought High-Tensile Alloy Steel
,”
Proceedings of the Institution of Mechanical Engineers
, Lisbon, Portugal, pp.
462
499
.
8.
Nishihara
,
T.
, and
Kawamoto
,
M.
,
1945
, “
The Strength of Metals Under Combined Alternating Bending and Torsion With Phase Difference
,”
Memoirs Coll. Eng., Kyoto Imperial Univ.
,
11
, pp.
85
112
.
9.
Achtelik
,
H.
,
Jakubowska
,
I.
, and
Macha
,
E.
,
1983
, “
Actual and Estimated Directions of Fatigue Fracture Plane in ZI250 Grey Cast Iron Under Combined Alternating Bending and Torsion
,”
Stud. Geotechnica Mech.
, 5(2), pp.
9
30
.
10.
Lempp
,
W.
,
1977
, “
Festigkeitsverhalten Von Stählen Bei Mehrachsiger Dauerschwingbeanspruchung Durch Normalspannungen Mit Überlagerten Phasengleichen Und Phasenverschobenen Schubspannungen
,” Ph.D. dissertation, Universität Stuttgart, Stuttgart, Germany.
11.
Zenner
,
H.
,
Heidenreich
,
R.
, and
Richter
,
I.
,
1985
, “
Dauerschwingfestigkeit Bei Nichtsynchroner Mehrachsiger Beanspruchung
,”
Z. Für Werkstofftechnik
,
16
(
3
), pp.
101
112
.10.1002/mawe.19850160310
12.
Froeschl
,
J.
,
Gerstmayr
,
G.
,
Eichlseder
,
W.
, and
Leitner
,
H.
,
2007
, “
Multiaxial Fatigue of qt-Steels: New Fatigue Strength Criterion for Anisotropic Material Behaviour
,”
Eighth International Conference on Multiaxial Fatigue and Fracture
, U. S. Fernando, ed., Sheffield, UK, p. S3-1.
13.
Matake
,
T.
,
1977
, “
An Explanation on Fatigue Limit Under Combined Stress
,”
Bull. JSME
,
20
(
141
), pp.
257
263
.10.1299/jsme1958.20.257
14.
Altenbach
,
H.
, and
Zolochevsky
,
A.
,
1996
, “
A Generalised Fatigue Limit Criterion and a Unified Theory of Low-Cycle Fatigue Damage
,”
Fatigue Fract. Eng. Mater. Struct.
,
19
(
10
), pp.
1207
1219
.10.1111/j.1460-2695.1996.tb00944.x
15.
Findley
,
W. N.
,
Coleman
,
J. J.
, and
Hanley
,
B. C.
,
1956
, “
Theory for Combined Bending and Torsion Fatigue With Data for SAE 4340 Steel
,”
Proceedings of International Conference on Fatigue of Metals, Institution of Mechanical Engineers
,
London, June 1,
pp.
150
157
.
16.
Froustey
,
C.
,
1986
, “
Fatigue Multiaxiale en Endurance de L’acier 30NCD16
,” Ph.D. thesis, Ecole Nationale Supérieure d’Arts et Métiers, Bordeaux, France.
17.
Froustey
,
C.
, and
Lasserre
,
S.
,
1989
, “
Multiaxial Fatigue Endurance of 30NCD16 Steel
,”
Int. J. Fatigue
,
11
(
3
), pp.
169
175
.10.1016/0142-1123(89)90436-2
18.
Froustey
,
C.
,
Lasserre
,
S.
, and
Dubar
,
L.
,
1992
, “
Essais de Fatigue Multiaxiaux et Par Blocs. Validation D’un Critère Pour Les Matériaux Métalliques
,”
METTECH 92
, Grenoble, France, Aug. 2.
19.
Fogué
,
M.
, and
Bahuaud
,
J.
,
1985
, “
Fatigue Multiaxiale à Durée de Vie Illimitée
,”
Proceedings of Comptes Rendus 7ème Congrès Français de Mécanique
, Bordeaux, France, Sept. 15, pp.
30
31
.
20.
Delahay
,
T.
, and
Palin-Luc
,
T.
,
2006
, “
Estimation of the Fatigue Strength Distribution in High-Cycle Multiaxial Fatigue Taking Into Account the Stress–Strain Gradient Effect
,”
Int. J. Fatigue
,
28
(
5–6
), pp.
474
484
.10.1016/j.ijfatigue.2005.06.048
21.
Palin-Luc
,
T.
, and
Lasserre
,
S.
,
1998
, “
An Energy Based Criterion for High Cycle Multiaxial Fatigue
,”
Eur. J. Mech.—A/Solids
,
17
(
2
), pp.
237
251
.10.1016/S0997-7538(98)80084-3
22.
Sonsino
,
C. M.
,
2001
, “
Influence of Load and Deformation-Controlled Multiaxial Tests on Fatigue Life to Crack Initiation
,”
Int. J. Fatigue
,
23
(
2
), pp.
159
167
.10.1016/S0142-1123(00)00079-7
23.
Akrache
,
R.
, and
Lu
,
J.
,
1999
, “
Three-Dimensional Calculations of High Cycle Fatigue Life Under Out-of-Phase Multiaxial Loading
,”
Fatigue Fract. Eng. Mater. Struct.
,
22
, pp.
527
534
.10.1046/j.1460-2695.1999.00172.x
24.
Gough
,
H. J.
,
Pollard
,
H. V.
, and
Clenshaw
,
W. J.
,
1951
,
Some Experiments on the Resistance of Metals to Fatigue Under Combined Stresses
,
Aeronautical Research Council, R and M 2522. HMSO
,
London
25.
Li
,
B. C.
,
Jiang
,
C.
,
Han
,
X.
, and
Li
,
Y.
,
2015
, “
A New Approach of Fatigue Life Prediction for Metallic Materials Under Multiaxial Loading
,”
Int. J. Fatigue
,
78
, pp.
1
10
.10.1016/j.ijfatigue.2015.02.022
26.
Shamsaei
,
N.
,
Fatemi
,
A.
, and
Socie
,
D. F.
,
2011
, “
Multiaxial Fatigue: An Overview and Same Approximation Models for Life Estimation
,”
Int J Fatigue
,
33
, pp.
948
–9
58
.10.1016/j.ijfatigue.2011.01.003
27.
Crossland
,
B.
,
1956
, “
Effect of Large Hydrostatic Pressures on the Torsional Fatigue Strength of an Alloy Steel
,”
Proceedings of the International Conference on Fatigue of Metals
, London, pp.
138
149
.
28.
Sines
,
G.
,
Waisman
,
J. L.
, and
Dolan
,
T. J.
,
1959
,
Metal Fatigue
,
McGraw-Hill
,
New York
.
29.
Papadopoulos
,
I. V.
,
Davoli
,
P.
,
Gorla
,
C.
,
Filippini
,
M.
, and
Bernasconi
,
A.
,
1997
, “
A Comparative Study of Multiaxial High-Cycle Fatigue Criteria for Metals
,”
Int J Fatigue
,
19
(
3
), pp.
219
235
.10.1016/S0142-1123(96)00064-3
30.
Papadopoulos
,
I. V.
,
2001
, “
Long Life Fatigue Under Multiaxial Loading
,”
Int J Fatigue
,
23
(
10
), pp.
839
849
.10.1016/S0142-1123(01)00059-7
31.
Gough
,
H. J.
, and
Pollard
,
H. V.
,
1937
, “
Properties of Some Materials for Cast Crankshafts, With Special Reference to Combined Alternating Stresses
,”
Proc. Inst. Automob. Eng.
,
31
, pp.
821
893
.10.1243/PIAE_PROC_1936_031_040_02
32.
Gough
,
H. J.
, and
Pollard
,
H. V.
,
1935
, “
The Strength of Metals Under Combined Alternating Stress
,”
Proc. Inst. Mech. Eng.
,
131
(
1
), pp.
3
18
.10.1243/PIME_PROC_1935_131_008_02
33.
Tao
,
G.
, and
Xia
,
Z.
,
2007
, “
Mean Stress/Strain Effect on Fatigue Behavior of an Epoxy Resin
,”
Int. J. Fatigue
,
29
(
12
), pp.
2180
2190
.10.1016/j.ijfatigue.2006.12.009
34.
Peterson
,
R. E.
,
1959
, “
Notch Sensitivity
,”
Metal Fatigue
,
G.
Sines
and
J. L.
Waisman (eds.)
,
McGraw-Hill
,
New York
, pp.
293
306
.
35.
Davoli
,
P.
,
Bernasconi
,
A.
,
Filippini
,
M.
, Foletti, S., and Papadopoulos, I. V.,
2003
, “
Independence of the Torsional Fatigue Limit Upon a Mean Shear Stress
,”
Int. J. Fatigue
,
25
(
6
), pp.
471
480
.10.1016/S0142-1123(02)00174-3
36.
Wang
,
C. H.
, and
Miller
,
K. J.
,
1991
, “
The Effect of Mean Shear Stress on Torsional Fatigue Behavior
,”
Fatigue Fract. Eng. Mater. Struct.
,
14
(
2–3
), pp.
293
307
.10.1111/j.1460-2695.1991.tb00659.x
37.
McClaflin
,
D.
, and
Fatemi
,
A.
,
2004
, “
Torsional Deformation and Fatigue of Hardened Steel Including Mean Stress and Stress Gradient Effects
,”
Int. J. Fatigue
,
26
(
7
), pp.
773
784
.10.1016/j.ijfatigue.2003.10.019
38.
Mayer
,
H.
,
Schuller
,
R.
,
Karr
,
U.
,
Irrasch
,
D.
,
Fitzka
,
M.
,
Hahn
,
M.
, and
Bacher-Höchst
,
M.
,
2015
, “
Cyclic Torsion Very High Cycle Fatigue of VDSiCr Spring Steel at Different Load Ratios
,”
Int. J. Fatigue
,
70
, pp.
322
327
.10.1016/j.ijfatigue.2014.10.007
39.
Gasiak
,
G.
, and
Pawliczek
,
R.
,
2001
, “
The Mean Loading Effect Under Cyclic Bending and Torsion of 18G2A Steel
,”
Sixth International Conference on Biaxial/Multiaxial Fatigue and Fracture
, Lisbon, Portugal, June 25–28, pp.
213
222
.
40.
Itoh
,
T.
,
Sakane
,
M.
,
Ohnami
,
M.
, and
Socie
,
D. F.
,
1995
, “
Nonproportional Low Cycle Fatigue Criterion for Type 304 Stainless Steel
,”
ASME J. Eng. Mater. Technol
,
117
(
3
), pp.
285
292
.10.1115/1.2804541
You do not currently have access to this content.