Abstract

Some Japanese nuclear power plants have experienced several large earthquakes beyond the design basis ground motion. In addition, cracks resulting from long-term operation have been detected in piping systems. Therefore, to assess the structure integrity and to evaluate the fragility of cracked pipes taking the occurrence of large earthquakes into account, it is very important to establish a crack growth evaluation method for cracked pipes that are subjected to large seismic cyclic response loading. In our previous study, we proposed an evaluation method for crack growth during large earthquakes through experimental study using small size specimens and investigation using finite element analyses. In the present study, to confirm applicability of the proposed method to pipe, crack growth tests were conducted on both stainless and carbon steel pipe specimens with a circumferential through-wall crack, considering large seismic cyclic response loading with complex waveforms. The predicted crack growth values are in good agreement with the experimental results and the applicability of the proposed method was confirmed.

References

1.
Miyazaki
,
K.
,
Kanno
,
S.
,
Hayashi
,
M.
,
Ishiwata
,
M.
,
Gotoh
,
N.
,
Miura
,
N.
,
Fujioka
,
T.
, and
Kashima
,
K.
,
1996
, “
Fracture Behavior Under Monotonic and Low Cycle Loading in Carbon Steel Pipes and Welded Pipe Joints With a Defect
,”
Fatigue and Fracture
, Vol.
1
, American Society of Mechanical Engineers, New York, pp.
241
248
.
2.
Miura
,
N.
,
2001
, “
Evaluation of Crack Opening Behavior for Cracked Pipes—Development of Crack Opening Evaluation Method in Consideration of Restraint
,” CRIEPI, Komae, Tokyo-to, Japan, Report No. T00006 (in Japanese).
3.
Hasegawa
,
K.
,
Sakata
,
K.
,
Miyazaki
,
K.
, and
Kanno
,
S.
,
2002
, “
Fatigue Strength for Pipes With Allowable Flaws and Design Fatigue Curve
,”
Int. J. Pressure Vessels Piping
,
79
(
1
), pp.
37
44
.10.1016/S0308-0161(01)00129-6
4.
Shiratori
,
M.
,
Yakura
,
M.
,
Karasawa
,
T.
,
Nakamura
,
I.
, and
Otani
,
A.
,
2000
, “
Failure Analysis of Degraded Piping Against Seismic Loading
,” 
Transaction of the Japan Society of Mechanical Engineers Series A
,
67
(654), pp. 209–215 (in Japanese).10.1299/kikaia.67.209
5.
Zhang
,
T.
,
Brust
,
F. W.
,
Wilkowski
,
G.
,
Xu
,
H.
,
Betervide
,
A. A.
, and
Mazzantini
,
O.
,
2012
, “
Beyond Design Basis Seismic Analysis for Atucha II Nuclear Plant
,”
International Conference on Nuclear Engineering
, Prague, Czech Republic, July 30, Paper No. ICONE20-POWER2012-54241.
6.
Zhang
,
T.
,
Brust
,
F. W.
,
Wilkowski
,
G.
,
Nie
,
J.
,
Hofmayer
,
C. H.
, and
Ali
,
S. A.
,
2010
, “
Analysis of JNES Seismic Tests on Degraded Piping
,”
ASME
Paper No. PVP2010-25333.10.1115/PVP2010-25333
7.
Wilkowski
,
G.
,
Brust
,
B.
,
Zhang
,
T.
,
Hattery
,
G.
,
Kalynam
,
S.
,
Shim
,
D.-J.
,
Kurth
,
E.
,
Hioe
,
Y.
,
Uddin
,
M.
,
Johnson
,
J. J.
,
Maslenikov
,
O. R.
,
Gurpainar
,
A.
,
Asfura
,
A. P.
,
Sumodobila
,
B.
,
Betervide
,
A. A.
, and
Mazzantini
,
O.
,
2011
, “
Robust LBB Analyses for Atucha II Nuclear Plant
,”
ASME
Paper No. PVP2011-57939.10.1115/PVP2011-57939
8.
Miura
,
N.
,
Fujioka
,
T.
,
Kashima
,
K.
,
Miyazaki
,
K.
,
Kanno
,
S.
, and
Ishiwata
,
M.
,
1997
, “
Development of Evaluation Method for Dynamic Fracture of Cracked Pipe
,” CRIEPI, Komae, Tokyo-to, Japan, Report No. T47 (in Japanese).
9.
Wheeler
,
O. E.
,
1972
, “
Spectrum Loading and Crack Growth
,”
ASME J. Basic Eng.
,
94
(
1
), pp.
181
186
.10.1115/1.3425362
10.
Yamaguchi
,
Y.
,
Katsuyama
,
J.
,
Onizawa
,
K.
,
Sugino
,
H.
,
Li
,
Y.
, and
Yagawa
,
G.
,
2009
, “
Experimental and Analytical Studies on the Effect of Excessive Loading on Fatigue Crack Propagation in Piping Materials
,”
ASME
Paper No. PVP2009-77682.10.1115/PVP2009-77682
11.
Yamaguchi
,
Y.
,
Li
,
Y.
,
Sugino
,
H.
,
Katsuyama
,
J.
, and
Onizawa
,
K.
,
2012
, “
Effect of Excessive Compressive Loading on Crack Growth Behavior
,”
Trans. Jpn. Soc. Mech. Eng., Ser. A
,
78
(
789
), pp.
613
617
.(in Japanese)10.1299/kikaia.78.613
12.
Yamaguchi
,
Y.
,
Katsuyama
,
J.
,
Onizawa
,
K.
, and
Li
,
Y.
,
2013
, “
Evaluation of Excessive Loading Effect on Fatigue crack growth behavior Based on Crack Blunting and Stress Distribution in Front of Crack Tip
,”
ASME
Paper No. PVP2013-97939.10.1115/PVP2013-97939
13.
Yamaguchi
,
Y.
,
Katsuyama
,
J.
, and
Li
,
Y.
,
2016
, “
Failure Probability Analysis of Aged Piping Using Probabilistic Fracture Mechanics Methodology Considering Seismic Loads
,”
ASME
Paper No. PVP2016-63801.10.1115/PVP2016-63801
14.
Yamaguchi
,
Y.
,
Udagawa
,
M.
,
Li
,
Y.
,
Katsuyama
,
J.
, and
Onizawa
,
K.
,
2013
, “
Evaluation Method of Crack Growth in Reactor Piping Subjected to Seismic Loading Beyond Small Scale Yielding Condition
,”
Proceedings of JSME M&M2013 Conference
, Gifu-ken, Japan, Oct. 11, Paper No. OS1427 (in Japanese).
15.
Zahoor
,
A.
,
1989
,
Ductile Fracture Handbook
, Vol.
1
, EPRI, Palo Alto, CA, Report No. NP-6301.
16.
Kumar
,
V.
, and
German
,
M. D.
,
1986
, “
Elastic-Plastic Analysis of Through-Wall and Surface Flaws in Cylinders
,” EPRI, Palo Alto, CA, Report No. EPRI NP-5596.
17.
Dowling
,
N. E.
,
1977
, “
Crack Growth During Low-Cycle Fatigue of Smooth Axial Specimens. Cyclic Stress-Strain and Plastic Deformation Aspects of Fatigue Crack Growth
,” ASTM International, West Conshohocken, PA
, Standard No. STP637
.
18.
Yamaguchi
,
Y.
,
Li
,
Y.
,
Sugino
,
H.
,
Katsuyama
,
J.
, and
Onizawa
,
K.
,
2011
, “
A Proposal for Evaluation Method of Crack Growth Due to Cyclic Overload for Piping Materials Based on an Elastic-Plastic Fracture Mechanics Parameter
,”
Trans. Jpn. Soc. Mech. Eng., Ser. A
,
77
(
777
), pp.
685
689
(in Japanese).10.1299/kikaia.77.685
19.
Rahman
,
S.
,
Wilkowski
,
G.
, and
Mohan
,
R.
,
1997
, “
Low-Cycle Fatigue Crack Growth Considerations in Pipe Fracture Analyses
,”
Nucl. Eng. Des.
,
168
(
1–3
), pp.
105
118
.10.1016/S0029-5493(96)00007-6
20.
Meggiolaro
,
M. A.
, and
Castro
,
J. T. P.
,
2001
, “
Comparison of Load Interaction Models in Fatigue Crack Propagation
,”
Proceeding of the COBEM 2001, Fracture Mechanics and Structural Integrity
, Uberlandia, Minas Ferais, Brazil, Nov. 26–30, p.
256
.
21.
Castro
,
J. T. P.
,
Meggiolaro
,
M. A.
, and
Miranda
,
A. C. O.
,
2005
, “
Singular and Non-Singular Approaches for Predicting Fatigue Crack Growth Behavior
,”
Int. J. Fatigue
,
27
(
10–12
), pp.
1366
1388
.10.1016/j.ijfatigue.2005.07.018
22.
Yamaguchi
,
Y.
,
Katsuyama
,
J.
, and
Li
,
Y.
,
2017
, “
Investigation of Crack Growth Evaluation Method Under Seismic Loading by Considering Effects of Load History
,” Proceedings of Yousetsu Kouzou Symposium, Osaka-fu, Japan, Dec. 5, Paper No. 104 (in Japanese).
23.
Ogawa
,
T.
,
Tokaji
,
K.
,
Ochi
,
S.
, and
Kobayashi
,
H.
,
1987
, “
The Effects of Loading History on Fatigue Crack Growth Threshold
,”
Trans. Jpn. Soc. Mech. Eng., Ser. A
,
53
(
487
), pp.
428
435
(in Japanese).10.1299/kikaia.53.428
24.
Japanese Industrial Standards Group,
2017
, “
Stainless Steel Pipes
,” Japanese Industrial Standards Group, Minato-ku, Tokyo-to, Japan, Standard No.
JIS G3459
(in Japanese).
25.
Japanese Industrial Standards Group,
2014
, “
Carbon Steel Pipes for High Temperature Service
,” Japanese Industrial Standards Group, Minato-ku, Tokyo-to, Japan, Standard No.
JIS G3456
(in Japanese).
26.
Zahoor
,
A.
,
1992
, “
Ductile Tearing Resistance of Flawed Pipes
,” EPRI, Palo Alto, CA, United States, Report No. EPRI TR-100374-T2.
27.
ASTM,
2018
, “
Standard Test Method for Measurement of Fracture Toughness
,” ASTM International, West Conshohocken, PA, Standard No.
E1820-18ae1.
28.
Shibata
,
K.
,
Ohba
,
T.
,
Kawamura
,
T.
,
Miyazono
,
S.
,
Kaneko
,
T.
, and
Yokoyama
,
N.
,
1986
, “
Ductile Fracture Behavior of 6-Inch Diameter Type 304 Stainless Steel and STS 42 Carbon Steel Piping Containing a Through-Wall or Part-Through Crack
,”
JOPSS
, 94(3), pp.
221
231
.https://jopss.jaea.go.jp/search/servlet/search?3020686&language=1
29.
Yamaguchi
,
Y.
,
Katsuyama
,
J.
,
Onizawa
,
K.
,
Sugino
,
H.
, and
Li
,
Y.
,
2010
, “
Investigation on Evaluation Method Based on J Integral for Retardation of Crack Growth Due to Excessive Loading Beyond Small Scale Yielding Condition
,”
ASME
Paper No. PVP2010-25563.10.1115/PVP2010-25563
30.
Miura
,
N.
,
Fujioka
,
T.
,
Kashima
,
K.
,
Miyazaki
,
K.
,
Kanno
,
S.
,
Hayashi
,
M.
,
Ishiwata
,
M.
, and
Gotoh
,
N.
,
1996
, “
Evaluation of Low-Cycle Fatigue Crack Growth and Subsequent Ductile Fracture for Cracked Pipe Experiments Using Cyclic J-Integral
,”
Fatigue and Fracture
, Vol.
1
, American Society of Mechanical Engineers, New York, pp. 249–256.
31.
Japan Nuclear Energy Safety Organization
,
2007
, “
Examination and Survey Report on Earthquake Resistance Evaluation Technology of Nuclear Facilities—Earthquake Resistance for Aged Components (Pipe)
,” Japan Nuclear Energy Safety Organization, Minato-ku, Tokyo-to, Report No. 0012 (in Japanese).
32.
The Japan Society of Mechanical Engineers
,
2015
, “
The JSME Codes for Nuclear Power Generation Facilities—Rules on Materials for Nuclear Power Plants
,” The Japan Society of Mechanical Engineers, Shinjuku-ku, Tokyo-to, Japan, Standard No, SNA1 (in Japanese).
You do not currently have access to this content.