Abstract

The recent advance of seismic metamaterials has led to various concepts for the attenuation of seismic waves, one of them being the locally resonant metamaterial. Based on this concept, the so-called metafoundation has been designed. It can effectively protect a fuel storage tank from ground motions at various fluid levels. In order to show the effectiveness of the proposed design, the response of the metafoundation is compared to the response of a tank on a traditional concrete foundation. The design process of conceiving the metafoundation, optimizing it for a specific tank, and its seismic response are described herein. Furthermore, the response of a tank during a seismic event can cause severe damages to pipelines connected to the tank. This phenomenon can be of critical importance for the design of a seismic tank protection system and must be treated with care. Since the coupled structure (tank + foundation + pipeline) exerts highly nonlinear behavior, due to the complexity of the piping system, a laboratory experiment has been conducted. More precisely, a hybrid simulation (HS) that uses the metafoundation and a tank as a numerical substructure (NS) and a piping system as a physical substructure (PS) was employed. To make the results relatable to the current state of the art, additional experiments were performed with concave sliding bearings (CSBs) as an isolation system in the NS. The metafoundation offered a clear attenuation of tank stresses and, in some cases, also reduced the stresses in the piping system.

References

1.
Cruz
,
A. M.
,
Steinberg
,
L. J.
, and
Vetere‐Arellano
,
A. L.
,
2006
, “
Emerging Issues for NaTech Disaster Risk Management in Europe
,”
J. Risk Res.
,
9
(
5
), pp.
483
501
.10.1080/13669870600717657
2.
Steinberg
,
L. J.
,
Sengul
,
H.
, and
Cruz
,
A. M.
,
2008
, “
NaTech Risk and Management: An Assessment of the State of the Art
,”
Nat. Hazards
,
46
(
2
), pp.
143
152
.10.1007/s11069-007-9205-3
3.
Cozzani
,
V.
,
Antonioni
,
G.
,
Landucci
,
G.
,
Tugnoli
,
A.
,
Bonvicini
,
S.
, and
Spadoni
,
G.
,
2014
, “
Quantitative Assessment of Domino and NaTech Scenarios in Complex Industrial Areas
,”
J. Loss Prev. Process Ind.
,
28
, pp.
10
22
.10.1016/j.jlp.2013.07.009
4.
Barka
,
A.
,
1999
, “
The 17 August 1999 Izmit Earthquake
,”
Science
,
285
(
5435
), pp.
1858
1859
.10.1126/science.285.5435.1858
5.
Nakashima
,
M.
,
Lavan
,
O.
,
Kurata
,
M.
, and
Luo
,
Y.
,
2014
, “
Earthquake Engineering Research Needs in Light of Lessons Learned From the 2011 Tohoku Earthquake
,”
Earthquake Eng. Eng. Vib.
,
13
(
S1
), pp.
141
149
.10.1007/s11803-014-0244-y
6.
Kelley
,
J. M.
, and
Konstantinidis
,
D.
,
2011
,
Mechanics of Rubber Bearings for Seismic and Vibration Isolation
,
Wiley,
Chichester, UK.
7.
Mokha
,
A.
,
Constantinou
,
C.
,
Reinhorn
,
A. M.
, and
Zayas
,
V. A.
,
1991
, “
Experimental Study of Friction‐Pendulum Isolation System
,”
J. Struct. Eng.
,
117
(
4
), pp.
1201
2117
.10.1061/(ASCE)0733-9445(1991)117:4(1201)
8.
Jadhav
,
M. B.
, and
Jangid
,
R. S.
,
2004
, “
Response of Base-Isolated Liquid Storage Tanks
,”
Shock Vib.
,
11
(
1
), pp.
33
45
.10.1155/2004/276030
9.
Solymar
,
L.
, and
Shamonina
,
E.
,
2009
,
Waves in Metamaterials
,
Oxford University Press
,
Oxford, UK
, Chap. II.
10.
Sigalas
,
M.
,
Kushwaha
,
M. S.
,
Economou
,
E. N.
,
Kafesaki
,
M.
,
Psarobas
,
I. E.
, and
Steurer
,
W.
,
2009
, “
Classical Vibration Modes in Phononic Lattices: Theory and Experiment
,”
Z. Kristallogr.—Cryst. Mater.
,
220
(
9–10
), pp.
765
809
.10.1524/zkri.2005.220.9-10.765
11.
Cheng
,
Z.
, and
Shi
,
Z. F.
,
2017
, “
Composite Periodic Foundation and Its Application for Seismic Isolation
,”
Earthquake Eng. Struct. Dyn.
,
47
(
4
), pp.
1
20
.10.1002/eqe.2999
12.
Cheng
,
Z.
, and
Zhifei
,
S.
,
2013
, “
Novel Composite Periodic Structures With Attenuation Zones
,”
Eng. Struct.
,
56
, pp.
1271
1282
.10.1016/j.engstruct.2013.07.003
13.
Gaofeng
,
J.
, and
Zhifei
,
S.
,
2010
, “
A New Seismic Isolation System and Its Feasibility Study
,”
Earthquake Eng. Eng. Vib.
,
9
, pp.
75
82
.10.1007/s11803-010-8159-8
14.
Ha
,
Y.-K.
,
Kim
,
J.-E.
,
Park
,
I.-W.
, and
Lee
,
H. Y.
,
2002
, “
Propagation of Water Waves Through Finite Periodic Arrays of Vertical Cylinders
,”
Appl. Phys. Lett.
,
81
(
7
), p.
1341
.10.1063/1.1499520
15.
Yan
,
Y.
,
Laskar
,
A.
,
Cheng
,
Z.
,
Menq
,
F.
,
Tang
,
Y.
,
Mo
,
Y. L.
, and
Shi
,
Z.
,
2014
, “
Seismic Isolation of Two Dimensional Periodic Foundations
,”
J. Appl. Phys.
,
116
(
4
), p.
044908
.10.1063/1.4891837
16.
Bursi
,
O. S.
,
Abbiati
,
G.
, and
Reza
,
M. S.
,
2014
, “
A Novel Testing Approach for Piping Systems of Industrial Plants
,”
Smart Struct. Syst.
,
14
(
6
), p.
1005
.10.12989/sss.2014.14.6.1005
17.
Bursi
,
O. S.
,
Reza
,
M. S.
,
Abbiati
,
G.
, and
Paolacci
,
F.
,
2015
, “
Performance-Based Earthquake Evaluation of a Full-Scale Petrochemical Piping System
,”
J. Loss Prev. Process Ind.
,
33
, pp.
10
22
.10.1016/j.jlp.2014.11.004
18.
EN
,
2003
, “Eurocode 2: Design of Concrete Structures—Part 1-1: General Rules and Rules for Buildings,” CEN, Bruxelles, Standard No. EN 1992-1-1.
19.
Malhotra
,
K. P.
,
Wenk
,
T.
, and
Wieland
,
M.
,
2000
, “
Simple Procedure for Seismic Analysis of Liquid-Storage Tanks
,”
Struct. Eng. Int.
,
10
(
3
), pp.
197
201
.10.2749/101686600780481509
20.
Belakroum
,
R.
,
Kadja
,
M.
,
Mai
,
T.
, and
Maalouf
,
C.
,
2010
, “
An Efficient Passive Technique for Reducing Sloshing in Rectangular Tanks Partially Filled With Liquid
,”
Mech. Res. Commun.
,
37
(
3
), pp.
341
349
.10.1016/j.mechrescom.2010.02.003
21.
Maleki
,
A.
, and
Ziyaeifar
,
M.
,
2008
, “
Sloshing Damping in Cylindrical Liquid Storage Tanks With Baffles
,”
J. Sound Vib.
,
311
(
1-2
), pp.
372
385
.10.1016/j.jsv.2007.09.031
22.
Phani
,
A. S.
,
Woodhouse
,
J.
, and
Fleck
,
N. A.
,
2006
, “
Wave Propagation in Two-Dimensional Periodic Lattices
,”
J. Acoust. Soc. Am.
,
119
(
4
), pp.
1995
2005
.10.1121/1.2179748
23.
Huang
,
H. H.
,
Sun
,
C. T.
, and
Huang
,
G. L.
,
2009
, “
On the Negative Effective Mass Density in Acoustic Metamaterials
,”
Int. J. Eng. Sci.
,
47
(
4
), pp.
610
617
.10.1016/j.ijengsci.2008.12.007
24.
EN
,
2005
, “Eurocode 8: Design of Structures for Earthquake Resistance—Part 1: General Rules, Seismic Actions and Rules for Buildings,” CEN, Bruxelles, Standard No. EN 1998-1-1.
25.
Carta
,
G.
,
Movchan
,
A. B.
,
Argani
,
L. P.
, and
Bursi
,
O. S.
,
2016
, “
Quasi-Periodicity and Multi-Scale Resonators for the Reduction of Seismic Vibrations in Fluid-Solid Systems
,”
Int. J. Eng. Sci.
,
109
, pp.
216
239
.10.1016/j.ijengsci.2016.09.010
26.
Ding
,
W. P.
, and
Chen
,
H. L.
,
2001
, “
A Symmetrical Finite Element Model for Structure-Acoustic Coupling Analysis of an Elastic, Thin-Walled Cavity
,”
J. Sound Vib.
,
243
(
3
), pp.
547
559
.10.1006/jsvi.2000.3478
27.
Abbiati
,
G.
,
La Salandra
,
V.
,
Bursi
,
O. S.
, and
Caracoglia
,
L.
,
2018
, “
A Composite Experimental Dynamic Substructuring Method Based on Partitioned Algorithms and Localized Lagrange Multipliers
,”
Mech. Syst. Signal Process.
,
100
, pp.
85
112
.10.1016/j.ymssp.2017.07.020
28.
Park
,
K. C.
,
Felippa
,
C. A.
, and
Gumaste
,
U. A.
,
2000
, “
A Localized Version of the Method of Lagrange Multipliers and Its Applications
,”
Comput. Mech.
,
24
(
6
), pp.
476
490
.10.1007/s004660050007
29.
U.S. Nuclear Regular Commission
,
2008
, “Seismic Analysis of Large-Scale Piping Systems for the JNES-NUPEC Ultimate Strength Piping Test Program,” Office of Nuclear Regulatory Research, Washington, DC.
30.
Bursi
,
O. S.
,
Di Filippo
,
R.
,
La Salandra
,
V.
,
Pedot
,
M.
, and
Reza
,
S.
,
2018
, “
Probabilistic Seismic Analysis of an LNG Subplant
,”
J. Loss Prev. Process Ind.
,
53
, pp.
45
60
.10.1016/j.jlp.2017.10.009
31.
Mostaghel
,
N.
,
1999
, “
Analytical Description of Pinching, Degrading Hysteretic Systems
,”
J. Eng. Mech.
,
125
(
2
), pp.
216
224
.10.1061/(ASCE)0733-9399(1999)125:2(216)
You do not currently have access to this content.