Abstract

A series of inelastic benchmark and parametric analyses was conducted on the tests of a pipe elbow and a piping system model made from carbon steel to investigate variabilities of elastic–plastic analysis results and clarify the factors affecting the analytical results. The analysis on the pipe elbow was the inelastic static analysis and the analysis on the piping system model included the inelastic dynamic analysis under the random input motion. From the benchmark analysis results, we found that setting the yield stress in the material property approximation had a significant influence on the inelastic analytical results, while the work hardening modulus in the bilinear approximation of the stress–strain curve had little influence. The parametric analysis was performed with the viewpoint to examine the influence of the yield stress and the work hardening modulus when the material property was approximated as the bilinear relation. The results also showed that the setting of the yield stress had larger impact on the analytical results than the setting of the work hardening modules. The parametric analysis results confirmed that the variation in the analytical results among different analysts would be reduced by using the same material property approximation.

References

1.
Japan Electric Association
,
2017
, “
Technical Code for Seismic Design of Nuclear Power Plants
,” Japan Electric Association, Tokyo, Japan, Paper No. JEAC4601-2015 (in Japanese).
2.
Tagart
,
S. W.
, Jr.
Tang
,
Y. K.
,
Guzy
,
D. J.
, and
Ranganath
,
S.
,
1990
, “
Piping Dynamic Reliability and Code Rule Change Recommendations
,”
Nucl. Eng. Des.
,
123
(
2–3
), pp.
373
385
.10.1016/0029-5493(90)90258-Y
3.
Slagis
,
G. C.
,
1998
, “
Experimental Data on Seismic Response of Piping Components
,”
ASME J. Pressure Vessel Technol.
,
120
(
4
), pp.
449
455
.10.1115/1.2842358
4.
Suzuki
,
K.
,
Naminta
,
Y.
,
Abe
,
H.
,
Ichihashi
,
I.
,
Suzuki
,
K.
,
Ishiwata
,
M.
,
Fujiwaka
,
T.
, and
Tai
,
K.
,
2002
, “
Seismic Proving Test of Ultimate Piping Strength (Test Results on Piping Component and Simplified Piping System)
,”
ASME
Paper No. PVP2002-1403.10.1115/PVP2002-1403
5.
Nakamura
,
I.
,
Otani
,
A.
, and
Shiratori
,
M.
,
2004
, “
Failure Behavior of Elbows With Local Wall Thinning Under Cyclic Load
,”
ASME
Paper No. PVP2004-2950.10.1115/PVP2004-2950
6.
Nakamura
,
I.
,
Otani
,
A.
, and
Shiratori
,
M.
,
2004
, “
Failure Behavior of Piping Systems With Wall Thinning Under Seismic Loading
,”
ASME J. Pressure Vessel Technol.
,
126
(
1
), pp.
85
90
.10.1115/1.1638787
7.
Varelis
,
G. E.
,
Karamanos
,
S. A.
, and
Gresnigt
,
A. M.
,
2013
, “
Pipe Elbows Under Strong Cyclic Loading
,”
ASME J. Pressure Vessel Technol.
,
135
(
1
), p.
011207
.10.1115/1.4007293
8.
Nakamura
,
I.
,
Otani
,
A.
, and
Shiratori
,
M.
,
2013
, “
Damage Process Compared to the Design Standard of the Elbow Subjected to In-Plane Cyclic Bending Load
,”
ASME
Paper No. PVP2013-97834.10.1115/PVP2013-97834
9.
Nakamura
,
I.
, and
Kasahara
,
N.
,
2015
, “
Excitation Tests on Elbow Pipe Specimens to Investigate Failure Behavior Under Excessive Seismic Loads
,”
ASME
Paper No: PVP2015-45711.10.1115/PVP2015-45711
10.
Ravikiran
,
A.
,
Dubey
,
P. N.
,
Agrawal
,
M. K.
,
Reddy
,
G. R.
,
Singh
,
R. K.
, and
Vaze
,
K. K.
,
2015
, “
Experimental and Numerical Studies of Ratcheting in a Pressurized Piping System Under Seismic Load
,”
ASME J. Pressure Vessel Technol.
,
137
(
3
), p.
031011
.10.1115/1.4028619
11.
Nakamura
,
I.
,
Shiratori
,
M.
,
Otani
,
A.
,
Morishita
,
M.
,
Shibutani
,
T.
, and
Nakamura
,
H.
,
2015
, “
Introduction of a Research Activity on the Seismic Safety Evaluation of Nuclear Piping Systems Taking the Effect of Elastic-Plastic Behavior Into Account
,”
ASME
Paper No: PVP2015-45262.10.1115/PVP2015-45262
12.
Morishita
,
M.
,
Otani
,
A.
,
Watakabe
,
T.
,
Nakamura
,
I.
,
Shibutani
,
T.
, and
Shiratori
,
M.
,
2017
, “
Seismic Qualification of Piping Systems by Detailed Inelastic Response Analysis—Part 1: A Code Case for Piping Seismic Evaluation Based on Detailed Inelastic Response Analysis
,”
ASME
Paper No. PVP2017-65166.10.1115/PVP2017-65166
13.
Otani
,
A.
,
Shibutani
,
T.
,
Morishita
,
M.
,
Nakamura
,
I.
,
Watakabe
,
T.
, and
Shiratori
,
M.
,
2017
, “
Seismic Qualification of Piping Systems by Detailed Inelastic Response Analysis—Part 2: A Guideline for Piping Seismic Inelastic Response Analysis
,”
ASME
Paper No. PVP2017-65190.10.1115/PVP2017-65190
14.
The Japan Society of Mechanical Engineers
,
2019
, “
An Alternative Rules on Seismic Design of Seismic S Class Piping by Elastic-Plastic Response Analysis
,” The Japan Society of Mechanical Engineers, Tokyo, Japan, Paper No. JSME S NC-CC-008 (in Japanese).
15.
Nakamura
,
I.
,
Otani
,
A.
,
Shibutani
,
T.
,
Morishita
,
M.
, and
Shiratori
,
M.
,
2016
, “
Findings From the Benchmark Analyses on an Elbow In-Plane Bending Test and a Piping System Test
,”
ASME
Paper No. PVP2016-63419.10.1115/PVP2016-63419
16.
Nakamura
,
I.
,
Otani
,
A.
,
Morishita
,
M.
,
Shiratori
,
M.
,
Watakabe
,
T.
, and
Shibutani
,
T.
,
2017
, “
Seismic Qualification of Piping Systems by Detailed Inelastic Response Analysis—Part 3: Variation in Elastic-Plastic Analysis Results on Carbon Steel Pipes From the Benchmark Analyses and the Parametric Analysis
,”
ASME
Paper No. PVP2017-65316.10.1115/PVP2017-65316
17.
Watakabe
,
T.
,
Nakamura
,
I.
,
Otani
,
A.
,
Morishita
,
M.
,
Shibutani
,
T.
, and
Shiratori
,
M.
,
2017
, “
Seismic Qualification of Piping Systems by Detailed Inelastic Response Analysis—Part 4: Second Round Benchmark Analyses With Stainless Steel Piping Components Test
,”
ASME
Paper No. PVP2017-65324.10.1115/PVP2017-65324
18.
The Japan Society of Mechanical Engineers
,
2013
, “
Codes for Nuclear Power Generation Facilities—Rules on Materials for Nuclear Facilities
,” The Japan Society of Mechanical Engineers, Tokyo, Japan, Paper No. JSME S NJ1-2013 (in Japanese).
19.
Nuclear Power Engineering Corporation
,
2002
, “
Report of Proving Tests on the Reliability for Nuclear Power Plant -FY2001—Part 2: Seismic Proving Test of Ultimate Piping Strength
,” Nuclear Power Engineering Corporation, Tokyo, Japan (in Japanese).
20.
Uesaka
,
M.
,
Kojima
,
N.
,
Muroya
,
I.
,
Nomura
,
H.
,
Yamazaki
,
J.
, and
Otani
,
A.
,
2014
, “
Investigation on Fatigue Curve Against Cyclic Loads of an Earthquake for Piping Components
,”
ASME
Paper No. PVP-2014-28234.10.1115/PVP-2014-28234
21.
Muralidharan
,
U.
, and
Manson
,
S. S.
,
1988
, “
A Modified Universal Slopes Equation for Estimation of Fatigue Characteristics of Metals
,”
ASME J. Eng. Mater. Technol.
,
110
(
1
), pp.
55
58
.10.1115/1.3226010
You do not currently have access to this content.