Abstract

The purpose of this paper is to show the electro-elastic static behavior of cylindrical sandwich pressure vessels integrated with piezoelectric layers. The core is made of functionally graded carbon nanotube-reinforced composite (FG-CNTRC). The cylinder is embedded between two piezoelectric layers made of PZT-4. The effective material properties of reinforced core with carbon nanotubes (CNTs) are calculated based on rule of mixture. The constitutive relations are developed in cylindrical coordinate system based on a higher-order shear deformation theory for both core and piezoelectric layers. The employed higher-order theory is based on third-order variation of deformations along the thickness direction to improve the accuracy of numerical results. The method of eigenvalue–eigenvector is used for solution of system of governing equations along the longitudinal direction. The numerical results are provided along the longitudinal and radial directions in terms of significant parameters such as various patterns of CNTs, various volume fractions of CNTs, various elastic foundation coefficients, and various applied electrical potentials.

References

1.
ASME,
2015
, “
ASME Boiler & Pressure Vessel Code, Section VIII, Division 1
,” American Society of Mechanical Engineers, New York.
2.
Camilleri
,
D.
, and
Brian
,
E.
,
2018
, “
Failure Envelopes for Composite Fiber Reinforced Pipe Elbows Subject to Combined Loading—A Numerical Assessment
,”
ASME J. Pressure Vessel Technol.
,
140
(
5
), p.
051701
.10.1115/1.4040994
3.
Dong
,
Q.
,
Wang
,
P.
,
Yi
,
C.
, and
Hu
,
B.
,
2016
, “
Dynamic Failure Behavior of Cylindrical Glass Fiber Composite Shells Subjected to Internal Blast Loading
,”
ASME J. Pressure Vessel Technol.
,
138
(
6
), p.
060901
.10.1115/1.4032433
4.
Davies
,
P.
,
Choqueuse
,
D.
,
Bigourdan
,
B.
, and
Chauchot
,
P.
,
2016
, “
Composite Cylinders for Deep Sea Applications: An Overview
,”
ASME J. Pressure Vessel Technol.
,
138
(
6
), p.
060904
.10.1115/1.4033942
5.
Pinto
,
M.
,
Matos
,
H.
,
Gupta
,
S.
, and
Shukla
,
A.
,
2016
, “
Experimental Investigation on Underwater Buckling of Thin-Walled Composite and Metallic Structures
,”
ASME J. Pressure Vessel Technol.
,
138
(
6
), p.
060905
.10.1115/1.4032703
6.
Ramos
,
I.
,
Ho Park
,
Y.
, and
Ulibarri-Sanchez
,
J.
,
2018
, “
Analytical and Numerical Studies of a Thick Anisotropic Multi-Layered Fiber Reinforced Composite Pressure Vessel
,”
ASME J. Pressure Vessel Technol.
,
141
(
1
), p.
011203
.10.1115/1.4041887
7.
Sui
,
Y.
,
Zhang
,
D.
,
Chen
,
B.
,
Wang
,
Z.
, and
Tang
,
S.
,
2017
, “
Experimental Research on Reactive Reinforcement Method for Cylindrical Vessel
,”
ASME J. Pressure Vessel Technol.
,
139
(
2
), p.
021215
.10.1115/1.4035699
8.
Li
,
Z. M.
,
Lin
,
Z.-Q.
, and
Chen
,
G.-L.
,
2011
, “
Postbuckling of Shear Deformable Geodesically Stiffened Anisotropic Laminated Cylindrical Shell Under External Pressure
,”
ASME J. Pressure Vessel Technol.
,
133
(
2
), p.
021204
.10.1115/1.4001742
9.
Faulkner
,
S. D.
, and
Kwon
,
Y. W.
,
2011
, “
Fracture Toughness of Composite Joints With Carbon Nanotube Reinforcement
,”
ASME J. Pressure Vessel Technol.
,
133
(
2
), p.
021002
.10.1115/1.4002676
10.
Thionnet
,
A.
,
Bunsell
,
A.
, and
Chou
,
H.-Y.
,
2016
, “
Intrinsic Mechanisms Limiting the Use of Carbon Fiber Composite Pressure Vessels
,”
ASME J. Pressure Vessel Technol.
,
138
(
6
), p.
064501
.10.1115/1.4032914
11.
Thai
,
T. Q.
,
Rabczuk
,
T.
, and
Zhuang
,
X.
,
2018
, “
A Large Deformation Isogeometric Approach for Flexoelectricity and Soft Materials
,”
Comput. Methods Appl. Mech. Eng.
,
341
, pp.
718
739
.10.1016/j.cma.2018.05.019
12.
Hamdia
,
K. M.
,
Ghasemi
,
H.
,
Zhuang
,
X.
,
Alajlan
,
N.
, and
Rabczuk
,
T.
,
2018
, “
Sensitivity and Uncertainty Analysis for Flexoelectric Nanostructures
,”
Comput. Methods Appl. Mech. Eng.
,
337
, pp.
95
109
.10.1016/j.cma.2018.03.016
13.
Nguyen
,
B. H.
,
Zhuang
,
X.
, and
Rabczuk
,
T.
,
2018
, “
Numerical Model for the Characterization of Maxwell-Wagner Relaxation in Piezoelectric and Flexoelectric Composite Material
,”
Comput. Struct.
,
208
, pp.
75
91
.10.1016/j.compstruc.2018.05.006
14.
Ghasemi
,
H.
,
Park
,
H.
, and
Rabczuk
,
T.
,
2016
, “
A Level-Set Based IGA Formulation for Topology Optimization of Flexoelectric Materials
,”
Comput. Methods Appl. Mech. Eng.
,
313
, pp.
239
258
.10.1016/j.cma.2016.09.029
15.
Ghasemi
,
H.
,
Park
,
H. S.
, and
Rabczuk
,
T.
,
2017
, “
A Multi-Material Level Set-Based Topology Optimization of Flexoelectric Composites
,”
Comput. Methods Appl. Mech. Eng.
,
332
, pp.
47
62
.10.1016/j.cma.2017.12.005
16.
Nanthakumar
,
S.
,
Lahmer
,
T.
,
Zhuang
,
X.
,
Zi
,
G.
, and
Rabczuk
,
T.
,
2016
, “
Detection of Material Interfaces Using a Regularized Level Set Method in Piezoelectric Structures
,”
Inverse Probl. Sci. Eng.
,
24
(1), pp.
153
176
.10.1080/17415977.2015.1017485
17.
Alibeigloo
,
A.
,
2013
, “
Free Vibration Analysis of Functionally Graded Carbon Nanotube-Reinforced Composite Cylindrical Panel Embedded in Piezoelectric Layers by Using Theory of Elasticity
,”
Eur. J. Mech. A
,
44
, pp.
104
115
.10.1016/j.euromechsol.2013.10.002
18.
Rahimi
,
G. H.
,
Arefi
,
M.
, and
Khoshgoftar
,
M. J.
,
2012
, “
Electro Elastic Analysis of a Pressurized Thick-Walled Functionally Graded Piezoelectric Cylinder Using the First Order Shear Deformation Theory and Energy Method
,”
Mechanics
,
18
(
3
), pp.
292
300
.10.5755/j01.mech.18.3.1875
19.
Ghasemi
,
H.
,
Brighenti
,
R.
,
Zhuang
,
X.
,
Muthu
,
J.
, and
Rabczuk
,
T.
,
2015
, “
Optimal Fiber Content and Distribution in Fiber-Reinforced Solids Using a Reliability and NURBS Based Sequential Optimization Approach
,”
Struct. Multidiscip. Optim.
,
51
(
1
), pp.
99
112
.10.1007/s00158-014-1114-y
20.
Ghasemi
,
H.
,
Rafiee
,
R.
,
Zhuang
,
X.
,
Muthu
,
J.
, and
Rabczuk
,
T.
,
2014
, “
Uncertainties Propagation in Metamodel-Based Probabilistic Optimization of CNT/Polymer Composite Structure Using Stochastic Multi-Scale Modeling
,”
Comput. Mater. Sci.
,
85
, pp.
295
305
.10.1016/j.commatsci.2014.01.020
21.
Arefi
,
M.
, and
Rahimi
,
G. H.
,
2012
, “
The Effect of Nonhomogeneity and End Supports on the Thermo Elastic Behavior of a Clamped–Clamped FG Cylinder Under Mechanical and Thermal Loads
,”
Int. J. Pressure Vessels Piping
,
96–97
, pp.
30
37
.10.1016/j.ijpvp.2012.05.009
22.
Arefi
,
M.
,
Rahimi
,
G. H.
, and
Khoshgoftar
,
M. J.
,
2011
, “
Optimized Design of a Cylinder Under Mechanical, Magnetic and Thermal Loads as a Sensor or Actuator Using a Functionally Graded Piezomagnetic Material
,”
Int. J. Phys. Sci.
,
6
(27), pp.
6315
6322
.10.5897/IJPS10.597
23.
Arefi
,
M.
,
2015
, “
Two-Dimensional Thermoelastic Analysis of a Functionally Graded Cylinder for Different Functionalities by Using the Higher-Order Shear Deformation Theory
,”
J. Appl. Mech. Tech. Phys.
,
56
(
3
), pp.
494
501
.10.1134/S0021894415030207
24.
Arefi
,
M.
,
Abbasi
,
A. R.
, and
Sereshk
,
M.
,
2016
, “
Two-Dimensional Thermoelastic Analysis of FG Cylindrical Shell Resting on the Pasternak Foundation Subjected to Mechanical and Thermal Loads Based on FSDT Formulation
,”
J. Therm. Stress
,
39
(
5
), pp.
554
570
.10.1080/01495739.2016.1158607
25.
Arefi
,
M.
,
Mohammadi
,
M.
,
Tabatabaeian
,
A.
,
Dimitri
,
R.
, and
Tornabene
,
F.
,
2018
, “
Two-Dimensional Thermo-Elastic Analysis of FG-CNTRC Cylindrical Pressure Vessels
,”
Steel Compos. Struct.
,
27
(4), pp.
525
536
.10.12989/scs.2018.27.4.525
26.
Arefi
,
M.
, and
Rahimi
,
G. H.
,
2014
, “
Application of Shear Deformation Theory for Two Dimensional Electro-Elastic Analysis of a FGP Cylinder
,”
Smart Struct. Syst.
,
13
(
1
), p.
1
.10.12989/sss.2014.13.1.001
27.
Mohammadi
,
M.
,
Arefi
,
M.
,
Dimitri
,
R.
, and
Tornabene
,
F.
,
2019
, “
Higher-Order Thermo-Elastic Analysis of FG-CNTRC Cylindrical Vessels Surrounded by a Pasternak Foundation
,”
Nanomaterials
,
9
(1), p.
79
.10.3390/nano9010079
28.
Breslavsky
,
I. D.
,
Amabili
,
M.
, and
Legrand
,
M.
,
2016
, “
Static and Dynamic Behavior of Circular Cylindrical Shell Made of Hyperelastic Arterial Material
,”
ASME J. Appl. Mech.
,
83
(
5
), p.
051002
.10.1115/1.4032549
29.
Breslavsky
,
I. D.
,
Amabili
,
M.
,
Legrand
,
M.
, and
Alijani
,
F.
,
2016
, “
Axisymmetric Deformations of Circular Rings Made of Linear and Neo-Hookean Materials Under Internal and External Pressure: A Benchmark for Finite Element Codes
,”
Int. J. Non Linear Mech.
,
84
, pp.
39
45
.10.1016/j.ijnonlinmec.2016.04.011
30.
Shen
,
H.
,
2016
, “
Postbuckling of Nanotube-Reinforced Composite Cylindrical Panels Resting on Elastic Foundations Subjected to Lateral Pressure in Thermal Environments
,”
Eng. Struct.
,
122
, pp.
174
183
.10.1016/j.engstruct.2016.05.004
31.
Kiani
,
Y.
,
2017
, “
Thermal Post-Buckling of FG-CNT Reinforced Composite Plates
,”
Compos. Struct.
,
159
, pp.
299
306
.10.1016/j.compstruct.2016.09.084
32.
Malikan
,
M.
,
2017
, “
Electro-Mechanical Shear Buckling of Piezoelectric Nanoplate Using Modified Couple Stress Theory Based on Simplified First Order Shear Deformation Theory
,”
Appl. Math. Model.
,
48
, pp.
196
207
.10.1016/j.apm.2017.03.065
33.
Dong
,
D. T.
, and
Van Dung
,
D.
,
2017
, “
A Third-Order Shear Deformation Theory for Nonlinear Vibration Analysis of Stiffened Functionally Graded Material Sandwich Doubly Curved Shallow Shells With Four Material Models
,”
J. Sandw. Struct. Mater.
,
21
(4), pp.
1316
1356
.10.1177/1099636217715609
34.
Tornabene
,
F.
,
Fantuzzi
,
N.
,
Bacciocchi
,
M.
, and
Viola
,
E.
,
2018
, “
Mechanical Behavior of Damaged Laminated Composites Plates and Shells: Higher-Order Shear Deformation Theories
,”
Compos. Struct.
,
189
, pp.
304
329
.10.1016/j.compstruct.2018.01.073
35.
Wang
,
Y.
, and
Wu
,
D.
,
2017
, “
Free Vibration of Functionally Graded Porous Cylindrical Shell Using a Sinusoidal Shear Deformation Theory
,”
Aerosp. Sci. Technol.
,
66
, pp.
83
91
.10.1016/j.ast.2017.03.003
36.
Reddy
,
J. N.
,
2017
,
Energy Principles Variational Methods Applied Mechanics
, Wiley, Hoboken, NJ.
You do not currently have access to this content.