This paper provides a critical review of the advancements made in the application of the variable material properties (VMP) method over the past two decades. The VMP method was originally proposed in 1997 (Jahed and Dubey, 1997, ASME J. Pressure Vessel Technol., 119(3), pp. 264–273; Jahed et al., 1997, Int. J. Pressure Vessels Piping, 71(3), pp. 285–291) and further developed in 2001 (Parker, 2001, ASME J. Pressure Vessel Technol., 123(3), p. 271) as an elastoplastic method for the analysis of axisymmetric problems. The model was originally developed as a boundary value problem to predict the spatial distribution of stress. However, since 1997, it has been extended to include thermal effects to solve thermomechanical residual stresses; time domain to solve creep of disks and cylinders; finite deformation to solve cylinders under large strains; numerical solutions to make them more efficient; and asymmetric hardening behavior to accommodate nonslip deformation modes. These advancements, made over the past 20 years, are reviewed in this paper, and future trends and frontiers are discussed.

References

1.
Jahed
,
H.
,
Sethuraman
,
R.
, and
Dubey
,
R. N.
,
1997
, “
A Variable Material Property Approach for Solving Elastic-Plastic Problems
,”
Int. J. Pressure Vessels Piping
,
71
(
3
), pp.
285
291
.
2.
Jahed
,
H.
, and
Dubey
,
R. N.
,
1997
, “
An Axisymmetric Method of Elastic-Plastic Analysis Capable of Predicting Residual Stress Field
,”
ASME J. Pressure Vessel Technol.
,
119
(
3
), pp.
264
273
.
3.
Parker
,
A. P.
,
2001
, “
Autofrettage of Open-End Tubes—Pressures, Stresses, Strains, and Code Comparisons
,”
ASME J. Pressure Vessel Technol.
,
123
(
3
), pp. 271–281.
4.
Timosenko
,
S.
, and
Goodier
,
J. N.
,
1951
,
Theory of Elasticity
,
McGraw-Hill
, New York.
5.
Jahed
,
H.
, and
Ghanbari
,
G.
,
2003
, “
Actual Unloading Behavior and Its Significance on Residual Stress in Machined Autofrettaged Tubes
,”
ASME J. Pressure Vessel Technol.
,
125
(
3
), pp.
321
325
.
6.
Troiano
,
E.
,
Parker
,
A. P.
, and
Underwood
,
J. H.
,
2004
, “
Mechanisms and Modeling Comparing HB7 and A723 High Strength Pressure Vessel Steels
,”
ASME J. Pressure Vessel Technol.
,
126
(
4
), pp.
473
477
.
7.
Bauschinger
,
J.
,
1881
, “
Ueber Die Veranderung Der Elasticitatagrenze Und Dea Elasticitatamoduls Verschiadener Metalle
,”
Civilingenieur
,
27
, pp.
289
348
.
8.
Walter
,
G.
,
1948
, “
Micro- and Macro-Deformations of Metals and Alloys Under Longitudinal Impact Loads
,”
Metall.
,
37
(
I
), pp.
287
292
.
9.
Chakrabarthy
,
J.
,
1987
,
Theory of Plasticity
,
McGraw-Hill
, New York.
10.
Franklin
,
G. J.
, and
Morrison
,
J. L. M.
,
1960
, “
Autofrettage of Cylinders: Prediction of Pressure/External Expansion Curves and Calculation of Residual Stresses
,”
Proc. Inst. Mech. Eng.
,
174
(
1
), pp.
947
974
.
11.
Chen
,
P. C. T.
,
1973
, “
A Comparison of Flow and Deformation Theories in a Radially Stressed Annular Plate
,”
ASME J. Appl. Mech.
,
40
(
1
), pp.
283
287
.
12.
Huang
,
X. P.
,
2005
, “
A General Autofrettage Model of a Thick-Walled Cylinder Based on Tensile-Compressive Stress-Strain Curve of a Material
,”
J. Strain Anal. Eng. Des.
,
40
(
6
), pp.
599
607
.
13.
Lazzarin
,
P.
, and
Livieri
,
P.
,
1997
, “
Different Solutions for Stress and Strain Fields in Autofrettaged Thick-Walled Cylinders
,”
Int. J. Pressure Vessels Piping
,
71
(
3
), pp.
231
238
.
14.
Livieri
,
P.
, and
Lazzarin
,
P.
,
2002
, “
Autofrettaged Cylindrical Vessels and Bauschinger Effect: An Analytical Frame for Evaluating Residual Stress Distributions
,”
ASME J. Pressure Vessel Technol.
,
124
(
1
), pp.
38
46
.
15.
Adibi-Asl
,
R.
, and
Livieri
,
P.
,
2007
, “
Analytical Approach in Autofrettaged Spherical Pressure Vessels Considering the Bauschinger Effect
,”
ASME J. Pressure Vessel Technol.
,
129
(
3
), pp.
411
419
.
16.
Farrahi
,
G. H.
,
Faghidian
,
S. A.
, and
Smith
,
D. J.
,
2009
, “
Reconstruction of Residual Stresses in Autofrettaged Thick-Walled Tubes From Limited Measurements
,”
Int. J. Pressure Vessels Piping
,
86
(
11
), pp.
777
784
.
17.
Faghidian
,
S. A.
,
2016
, “
Analytical Inverse Solution of Eigenstrains and Residual Fields in Autofrettaged Thick-Walled Tubes
,”
ASME J. Pressure Vessel Technol.
,
139
(
3
), p.
031205
.
18.
Chu
,
S. C.
,
1972
, “
A More Rational Approach to the Problem of an Elastoplastic Thick-Walled Cylinder
,”
J. Franklin Inst.
,
294
(
1
), pp.
57
65
.
19.
Kottgen
,
V.
,
Schon
,
M.
, and
Seeger
,
T.
,
1993
, “
Application of a Multiaxial Load-Notch Strain Approximation Procedure to Autofrettage of Pressurized Components
,”
Advances in Multiaxial Fatigue
, American Society for Testing and Materials, Philadelphia, PA, pp.
375
396
.
20.
Gibson
,
M. C.
,
2008
, “
Determination of Residual Stress Distributions in Autofrettaged Thick-Walled Cylinders
,”
Ph.D. thesis
, Cranfield University, Cranfield, UK.
21.
Gibson
,
M. C.
,
Hameed
,
A.
,
Hetherington
,
J. G.
, and
Parker
,
A. P.
,
2007
, “
Custom Material Modeling Within FEA for Use in Autofrettage Simulation
,”
ASME
Paper No. PVP2007-26341.
22.
Gibson
,
M. C.
,
Hameed
,
A.
,
Parker
,
A. P.
, and
Hetherington
,
J. G.
,
2006
, “
A Comparison of Methods for Predicting Residual Stresses in Strain-Hardening, Autofrettaged Thick Cylinders, Including the Bauschinger Effect
,”
ASME J. Pressure Vessel Technol.
,
128
(
2
), pp.
217
222
.
23.
Gibson
,
M. C.
,
Parker
,
A. P.
,
Hameed
,
A.
, and
Hetherington
,
J. G.
,
2012
, “
Implementing Realistic, Nonlinear, Material Stress–Strain Behavior in ANSYS for the Autofrettage of Thick-Walled Cylinders
,”
ASME J. Pressure Vessel Technol.
,
134
(
5
), p.
051202
.
24.
Hameed
,
A.
,
Brown
,
R. D.
, and
Hetherington
,
J. G.
,
2003
, “
Numerical Analysis of the Effect of Machining on the Depth of Yield, Maximum Firing Pressure and Residual Stress Profile in an Autofrettaged Gun Tube
,”
ASME J. Pressure Vessel Technol.
,
125
(
3
), pp.
342
346
.
25.
Yong
,
L.
, and
Naijie
,
S.
,
1991
, “
Residual Stresses Analysis for Actual Material Model of Autofrettaged Tube by Non-Linear Boundary Element Method
,”
Int. J. Pressure Vessels Piping
,
48
(1), pp.
21
35
.
26.
Sachs
,
G.
,
1927
, “
Der Nachweis Immerer Spannungen in Stangen Und Rohen
,”
Zeits. Met.
,
19
, pp.
352
357
.
27.
Pintschovius
,
L.
,
Macherauch
,
E.
, and
Scholtes
,
B.
,
1986
, “
Determination of Residual Stresses in Autofrettaged Steel Tubes by Neutron and X-Ray Diffraction
,”
Mater. Sci. Eng.
,
84
, pp.
163
170
.
28.
Stacey
,
A.
, and
Webster
,
G. A.
,
1988
, “
Determination of Residual Stress Distribution in Autofrettaged Tubing
,”
Int. J. Pressure Vessels Piping
,
31
(
3
), pp.
205
220
.
29.
De Swardt
,
R. R.
,
2003
, “
Finite Element Simulation of the Sachs Boring Method of Measuring Residual Stress in Thick Walled Cylinders
,”
ASME J. Pressure Vessel Technol.
,
125
(
3
), pp.
274
276
.
30.
Parker
,
A. P.
,
Underwood
,
J. H.
, and
Kendall
,
D. P.
,
1999
, “
Bauschinger Effect Design Procedures for Autofrettaged Tubes Including Material Removal and Sachs' Method
,”
ASME J. Pressure Vessel Technol.
,
121
(
4
), pp.
430
437
.
31.
Jahed
,
H.
,
Faritus
,
M. R.
, and
Jahed
,
Z.
,
2012
, “
Residual Stress Measurements in an Autofrettage Tube Using Hole Drilling Method
,”
ASME J. Pressure Vessel Technol.
,
134
(
5
), p.
051501
.
32.
Weiss
,
V.
,
1956
, “
Residual Stresses in Cylinders
,” Syracuse University, Syracuse, NY, Report No. MET 345-563T2.
33.
Parker
,
A. P.
,
2004
, “
A Critical Examination of Sachs' Material-Removal Method for Determination of Residual Stress
,”
ASME J. Pressure Vessel Technol.
,
126
(
2
), pp.
234
236
.
34.
Parker
,
A. P.
,
2006
, “
An Improved Method for Recovering Residual Stress From Strain Measurements in Cylinders and Rings
,”
ASME
Paper No. PVP2006-ICPVT-11-93758.
35.
ASME
,
1997
, “
Design Using Autofrettage, Division 3, Section 8, Article KD-5
,” American Society of Mechanical Engineers, New York, pp.
71
73
.
36.
Parker
,
A. P.
,
O'Hara
,
G. P.
, and
Underwood
,
J. H.
,
2003
, “
Hydraulic Versus Swage Autofrettage and Implications of the Bauschinger Effect
,”
ASME J. Pressure Vessel Technol.
,
125
(
3
), pp.
309
314
.
37.
Farrahi
,
G. H.
,
Hosseinian
,
E.
, and
Assempour
,
A.
,
2008
, “
General Variable Material Property Formulation for the Solution of Autofrettaged Thick-Walled Tubes With Constant Axial Strains
,”
ASME J. Pressure Vessel Technol.
,
130
(
4
), p.
041209
.
38.
Hosseinian
,
E.
,
Farrahi
,
G. H.
, and
Movahhedy
,
M. R.
,
2009
, “
An Analytical Framework for the Solution of Autofrettaged Tubes Under Constant Axial Strain Condition
,”
ASME J. Pressure Vessel Technol.
,
131
(
6
), p.
061201
.
39.
Darijani
,
H.
, and
Naghdabadi
,
R.
,
2013
, “
Constitutive Law of Finite Deformation Elastoplasticity With Proportional Loadings
,”
ASME J. Pressure Vessel Technol.
,
135
(
6
), p.
061201
.
40.
Parker
,
A. P.
,
2001
, “
Bauschinger Effect Design Procedures for Compound Tubes Containing an Autofrettaged Layer
,”
ASME J. Pressure Vessel Technol.
,
123
(
2
), pp.
203
206
.
41.
Parker
,
A. P.
, and
Kendall
,
D. P.
,
2003
, “
Residual Stresses and Lifetimes of Tubes Subjected to Shrink Fit Prior to Autofrettage
,”
ASME J. Pressure Vessel Technol.
,
125
(
3
), pp.
282
286
.
42.
ASME,
2001
, “
ASME Boiler and Pressure Vessel Code Section VIII, Division 3, Appendix D
,” American Society of Mechanical Engineers, New York.
43.
Jahed
,
H.
,
Farshi
,
B.
, and
Karimi
,
M.
,
2005
, “
Optimum Design of Multi-Layered Vessels
,”
ASME
Paper No. PVP2005-71543.
44.
Jahed
,
H.
,
Farshi
,
B.
, and
Karimi
,
M.
,
2006
, “
Optimum Autofrettage and Shrink-Fit Combination in Multi-Layer Cylinders
,”
ASME J. Pressure Vessel Technol.
,
128
(
2
), pp.
196
200
.
45.
Nelder
,
J. A.
, and
Mead
,
R.
,
1965
, “
A Simplex Method for Function Minimization
,”
Comput. J.
,
7
(
4
), pp.
308
313
.
46.
Mohammadi
,
M.
,
Farrahi
,
G. H.
, and
Hoseini
,
S. H.
,
2007
, “
Determination of Residual Stresses in Autofrettaged Compound Tubes for Different Geometries
,”
ASME
Paper No. PVP2007-26628.
47.
Mohammadi
,
M.
,
Farrahi
,
G. H.
, and
Hoseini
,
S. H.
,
2007
, “
Material Removal Simulation of Aluminum Compound Tubes With Incorporating Real Unloading Behavior
,”
ASME
Paper No. PVP2007-26740.
48.
Mohammadi
,
M.
,
Farrahi
,
G. H.
, and
Hoseini
,
S. H.
,
2007
, “
Bauschinger Effect Investigation of an Aluminum Alloy, and Its Application in Autofrettaged and Compound Tubes
,”
ASME
Paper No. PVP2007-26634.
49.
Parker
,
A. P.
,
Troiano
,
E.
, and
Underwood
,
J. H.
,
2005
, “
Stresses Within Compound Tubes Comprising a Steel Liner and an External Carbon-Fiber Wrapped Laminates
,”
ASME J. Pressure Vessel Technol.
,
127
(
1
), pp.
26
30
.
50.
Underwood
,
J. H.
, and
Parker
,
A. P.
,
2004
, “
Stress and Fracture Analysis of Ceramic Lined, Composite or Steel Jacketed Pressure Vessels
,”
ASME J. Pressure Vessel Technol.
,
126
(
4
), pp. 485–488.
51.
Sedighi
,
M.
, and
Jabbari
,
A. H.
,
2013
, “
Investigation of Residual Stresses in Thick-Walled Vessels With Combination of Autofrettage and Wire-Winding
,”
Int. J. Pressure Vessels Piping
,
111–112
, pp.
295
301
.
52.
ASME,
2004
, ”
ASME Code, Section VIII, Division 3, Article KD-9
,” American Society of Mechanical Engineers, New York.
53.
Sedighi
,
M.
,
Jabbari
,
A. H.
, and
Razeghi
,
A. M.
,
2017
, “
Effective Parameters on Fatigue Life of Wire-Wound Autofrettaged Pressure Vessels
,”
Int. J. Pressure Vessels Piping
,
149
, pp.
66
74
.
54.
Parker
,
A. P.
, and
Huang
,
X.
,
2007
, “
Autofrettage and Reautofrettage of a Spherical Pressure Vessel
,”
ASME J. Pressure Vessel Technol.
,
129
(
1
), pp.
83
88
.
55.
Hill
,
R.
,
1967
,
The Mathematical Theory of Plasticity
,
Oxford University Press
, New York.
56.
Maleki
,
M.
,
Farrahi
,
G. H.
,
Haghpanah Jahromi
,
B.
, and
Hosseinian
,
E.
,
2010
, “
Residual Stress Analysis of Autofrettaged Thick-Walled Spherical Pressure Vessel
,”
Int. J. Pressure Vessels Piping
,
87
(
7
), pp.
396
401
.
57.
Perl
,
M.
, and
Perry
,
J.
,
2010
, “
The Beneficial Contribution of Realistic Autofrettage to the Load-Carrying Capacity of Thick-Walled Spherical Pressure Vessels
,”
ASME J. Pressure Vessel Technol.
,
132
(
1
), p.
011204
.
58.
Darijani
,
H.
,
Shamsaei
,
N.
,
Naghdabadi
,
R.
, and
Sararoudi
,
M. D.
,
2006
, “
Elastoplastic Stress Study in Thick-Walled Spherical Vessels Considering Finite Deformation
,”
ASME
Paper No. ESDA2006-95065.
59.
Parker
,
A. P.
,
2004
, “
A Re-Autofrettage Procedure for Mitigation of Bauschinger Effect in Thick Cylinders
,”
ASME J. Pressure Vessel Technol.
,
126
(
4
), pp.
451
454
.
60.
Parker
,
A. P.
,
Troiano
,
E.
, and
Underwood
,
J. H.
,
2009
, “
Mutiple Autofrettage
,” U.S. Secretary of the Army, Washington, DC, U.S. Patent No.
US7818986 B1
.
61.
Underwood
,
J. H.
,
Venter
,
A. M.
,
Hyland
,
E. J.
,
de Swardt
,
R. R.
,
Troiano
,
E.
, and
Parker
,
A. P.
,
2007
, “
Hill Stress Calculations for Autofrettaged Tubes Compared With Neutron Diffraction Residual Stresses and Measured Yield Pressure and Fatigue Life
,”
ASME
Paper No. PVP2007-26617.
62.
Parker
,
A. P.
,
Troiano
,
E.
, and
Underwood
,
J. H.
,
2012
, “
Impact of Intensity of Residual Stress Field Upon Reyielding and Re-Autofrettage of an Autofrettaged Thick Cylinder
,”
ASME J. Pressure Vessel Technol.
,
134
(
4
), p.
041003
.
63.
Parker
,
A. P.
,
2008
, “
Demonstration Project Relating to Stress Analysis of SWAGE-Autofrettaged and Re-Autofrettaged Gun Tubes
,” European Research Office of the U.S. Army, East Sussex, UK, Report No.
ADA482333
.
64.
Jahed
,
H.
,
Moghadam
,
B. A.
, and
Shambooli
,
M.
,
2006
, “
Re-Autofrettage
,”
ASME J. Pressure Vessel Technol.
,
128
(
2
), pp.
223
226
.
65.
Parker
,
A. P.
,
2012
, “
Compound and Monobloc Cylinders Incorporating Reverse-Autofrettage to Reduce External Hoop Stresses
,”
ASME
Paper No. PVP2012-78298.
66.
Bahemmat
,
P.
,
Molki
,
H.
, and
Kharamani
,
A. A.
,
2011
, “
Enhancing Retaining Ring Durability of High-Speed Generators Using Autofrettage Process
,” Third Conference on Thermal Power Plants (
CTTP
), Tehran, Iran, Oct. 18–19, pp. 1–5.
67.
Ekhteraei Toussi
,
H.
, and
Rezaei Farimani
,
M.
,
2012
, “
Elasto-Plastic Deformation Analysis of Rotating Disc Beyond Its Limit Speed
,”
Int. J. Pressure Vessels Piping
,
89
, pp.
170
177
.
68.
Eraslan
,
A. N.
, and
Orcan
,
Y.
,
2002
, “
Elastic-Plastic Deformation of a Rotating Solid Disk of Exponentially Varying Thickness
,”
Mech. Mater.
,
34
(
7
), pp.
423
432
.
69.
Eraslan
,
A. N.
, and
Argeso
,
H.
,
2002
, “
Limit Angular Velocities of Variable Thickness Rotating Disks
,”
Int. J. Solids Struct.
,
39
(
12
), pp.
3109
3130
.
70.
Gamer
,
U.
,
1983
, “
Tresca's Yield Condition and the Rotating Disk
,”
ASME J. Appl. Mech.
,
50
(
3
), pp.
676
678
.
71.
Ma
,
G.
,
Hao
,
H.
, and
Miyamoto
,
Y.
,
2001
, “
Limit Angular Velocity of Rotating Disc With Unified Yield Criterion
,”
Int. J. Mech. Sci.
,
43
(
5
), pp.
1137
1153
.
72.
Guven
,
U.
,
1998
, “
Elastic Plastic Stress Distribution in Rotating Hyperbolic Disk With Rigid Inclusion
,”
Int. J. Mech. Sci.
,
40
(
l
), pp.
97
109
.
73.
You
,
L. H.
, and
Zhang
,
J. J.
,
1999
, “
Elastic Plastic Stresses in a Rotating Solid Disk
,”
Int. J. Mech. Sci.
,
41
(
3
), pp.
269
282
.
74.
Desikan
,
V.
, and
Sethuraman
,
R.
,
2000
, “
Analysis of Material Nonlinear Problems Using Pseudo-Elastic Finite Element Method
,”
ASME J. Pressure Vessel Technol.
,
122
(4), pp.
457
461
.
75.
Hojjati
,
M. H.
, and
Hassani
,
A.
,
2008
, “
Theoretical and Numerical Analyses of Rotating Discs of Non-Uniform Thickness and Density
,”
Int. J. Pressure Vessels Piping
,
85
(
10
), pp.
694
700
.
76.
Meguid
,
S. A.
,
Kanth
,
P. S.
, and
Czekanski
,
A.
,
2000
, “
Finite Element Analysis of Fir-Tree Region in Turbine Discs
,”
Finite Elem. Anal. Des.
,
35
(
4
), pp.
305
317
.
77.
Sherkati
,
S.
, and
Jahed
,
H.
,
2000
, “
Thermoplastic Analysis of Inhomogeneous Rotating Disk With Variable Thickness
,” Fourth International Conference of the Engineering Integrity Society (Fatigue 2000), Cambridge, UK, Apr. 10–12, pp.
229
238
.
78.
Jahed
,
H.
, and
Shirazi
,
R.
,
2001
, “
Loading and Unloading Behaviour of a Thermoplastic Disc
,”
Int. J. Pressure Vessels Piping
,
78
(
9
), pp.
637
645
.
79.
Farshi
,
B.
,
Jahed
,
H.
, and
Mehrabian
,
A.
,
2004
, “
Optimum Design of Inhomogeneous Non-Uniform Rotating Discs
,”
Comput. Struct.
,
82
(
9–10
), pp.
773
779
.
80.
Jahed
,
H.
,
Farshi
,
B.
, and
Bidabadi
,
J.
,
2005
, “
Minimum Weight Design of Inhomogeneous Rotating Discs
,”
Int. J. Pressure Vessels Piping
,
82
(
1
), pp.
35
41
.
81.
Hassani
,
A.
,
Hojjati
,
M. H.
,
Mahdavi
,
E.
,
Alashti
,
R. A.
, and
Farrahi
,
G.
,
2012
, “
Thermo-Mechanical Analysis of Rotating Disks With Non-Uniform Thickness and Material Properties
,”
Int. J. Pressure Vessels Piping
,
98
, pp.
95
101
.
82.
Jahed
,
H.
, and
Bidabadi
,
J.
,
2003
, “
An Axisymmetric Method of Creep Analysis for Primary and Secondary Creep
,”
Int. J. Pressure Vessels Piping
,
80
(
9
), pp.
597
606
.
83.
Farshi
,
B.
, and
Bidabadi
,
J.
,
2008
, “
Optimum Design of Inhomogeneous Rotating Discs Under Secondary Creep
,”
Int. J. Pressure Vessels Piping
,
85
(
7
), pp.
507
515
.
84.
Farshi
,
B.
, and
Bidabadi
,
J.
,
2011
, “
Optimum Design of Inhomogeneous Rotating Disks for Minimum Creep Induced Radial Displacement
,”
ASME J. Pressure Vessel Technol.
,
133
(
5
), p.
051206
.
85.
Birman
,
V.
, and
Byrd
,
L. W.
,
2007
, “
Modeling and Analysis of Functionally Graded Materials and Structures
,”
ASME Appl. Mech. Rev.
,
60
(
5
), pp.
195
216
.
86.
Miyamoto
,
Y.
,
Kaysser
,
W. A.
,
Rabin
,
B. H.
,
Kawasaki
,
A.
, and
Ford
,
R. G.
,
1999
,
Functionally Graded Materials: Design, Processing and Application
,
Kluwer Academic Publishers
,
Hingham, MA
.
87.
Haghpanah Jahromi
,
B.
,
Farrahi
,
G. H.
,
Maleki
,
M.
,
Nayeb-Hashemi
,
H.
, and
Vaziri
,
A.
,
2009
, “
Residual Stresses in Autofrettaged Vessel Made of Functionally Graded Material
,”
Eng. Struct.
,
31
(
12
), pp.
2930
2935
.
88.
Suresh
,
S.
, and
Mortensen
,
A.
,
1998
,
Fundamentals of Functionally Graded Materials: Processing and Thermomechanical Behaviour of Graded Metals and Metal-Ceramic Composites
,
IOM Communications
,
London
.
89.
Jahromi
,
B. H.
,
Ajdari
,
A.
,
Nayeb-Hashemi
,
H.
, and
Vaziri
,
A.
,
2010
, “
Autofrettage of Layered and Functionally Graded Metal-Ceramic Composite Vessels
,”
Compos. Struct.
,
92
(
8
), pp.
1813
1822
.
90.
Sadeghian
,
M.
, and
Toussi
,
H. E.
,
2013
, “
Solutions to the Problem of Thermo-Mechanical Yielding in Functionally Graded Material Cylindrical Vessels
,”
J. Reinf. Plast. Compos.
,
32
(
21
), pp.
1624
1633
.
91.
Jahromi
,
B. H.
,
Nayeb-Hashemi
,
H.
, and
Vaziri
,
A.
,
2012
, “
Elasto-Plastic Stresses in a Functionally Graded Rotating Disk
,”
J. Eng. Mater. Technol.
,
134
(
2
), p.
21004
.
92.
Farimani
,
M. R.
, and
Toussi
,
H. E.
,
2013
, “
Plastic Limit Speed of FGM Disc Due to the Variation of Temperature and Material Composition
,”
ASME J. Reinf. Plast. Compos.
,
32
(
17
), pp.
1257
1267
.
93.
Blazynski
,
T. Z.
,
1983
,
Applied Elasto-Plasticity of Solids
,
Macmillan Press
,
London
.
94.
Mahdavi, E., AkbariAlashti, R., Cheloee Darabi, A., and Alizadeh, M.,
2013
, “
Linear Thermoplastic Analysis of FGM Rotating Discs With Variable Thickness
,”
Iran. J. Mech. Eng.
,
14
(
2
), pp.
73
87
.
95.
Mahdavi
,
E.
,
Ghasemi
,
A.
, and
Alashti
,
R. A.
,
2016
, “
Elastic-Plastic Analysis of Functionally Graded Rotating Disks With Variable Thickness and Temperature-Dependent Material Properties Under Mechanical Loading and Unloading
,”
Aerosp. Sci. Technol.
,
59
, pp.
57
68
.
96.
Behravesh
,
S. B.
,
2013
, “
Fatigue Characterization and Cyclic Plasticity Modeling of Magnesium Spot-Welds
,”
Ph.D. thesis
, University of Waterloo, Waterloo, ON, Canada.
97.
Behravesh
,
S. B.
,
Jahed
,
H.
, and
Lambert
,
S.
,
2014
, “
Fatigue Characterization and Modeling of AZ31B Magnesium Alloy Spot-Welds
,”
Int. J. Fatigue
,
64
, pp.
1
13
.
98.
Kalateh Mollaei
,
E.
, and
Jahed
,
H.
,
2013
, “
Load Controlled Fatigue of AZ31B
,”
J. Mech. Res. Appl.
,
4
(
2
), pp.
41
47
.
99.
Kalatehmollaei
,
E.
,
Mahmoudi-Asl
,
H.
, and
Jahed
,
H.
,
2014
, “
An Asymmetric Elastic-Plastic Analysis of the Load-Controlled Rotating Bending Test and Its Application in the Fatigue Life Estimation of Wrought Magnesium AZ31B
,”
Int. J. Fatigue
,
64
, pp.
33
41
.
100.
Marzbanrad
,
B.
,
2015
, “
Behaviour of Magnesium Alloy Under Load-Control Cyclic Testing
,”
M.Sc. thesis
, University of Waterloo, Waterloo, ON, Canada.
101.
Marzbanrad
,
B.
,
Toyserkani
,
E.
, and
Jahed
,
H.
,
2017
, “
Cyclic Hysteresis of AZ31B Extrusion Under Load-Control Tests Using Embedded Sensor Technology
,”
Fatigue Fract. Eng. Mater. Struct.
,
40
(
2
), pp.
221
232
.
102.
Jahed
,
H.
, and
Khayamian
,
M. A.
,
2012
, “
An Anisotropic Axisymmetric Model for Wrought Magnesium Alloys
,”
Int. J. Adv. Des. Manuf. Technol.
,
5
(
4
), pp.
7
11
.
103.
Khayamian
,
M. A.
,
Behravesh
,
B.
, and
Jahed
,
H.
,
2016
, “
Incorporation of Asymmetric Yield and Hardening Behaviour in Axisymmetric Elastoplastic Problems
,”
Mater. Des.
,
99
, pp.
490
499
.
104.
Hill
,
R.
,
1950
,
The Mathematical Theory of Plasticity
,
Oxford University Press
,
OXford, UK
.
105.
Nadai
,
A.
,
1943
, “
Theory of the Expanding of Boiler and Condenser Tube Joints Through Rolling
,”
Trans. ASME
,
65
, pp.
865
880
.
106.
Forman
,
R. G.
, and
Hsu
,
Y. C.
,
1975
, “
Elastic-Plastic Analysis of an Infinite Sheet Having a Circular Hole Under Pressure
,”
ASME J. Appl. Mech.
,
42
(
2
), pp.
347
352
.
107.
Cazacu
,
O.
, and
Barlat
,
F.
,
2004
, “
A Criterion for Description of Anisotropy and Yield Differential Effects in Pressure-Insensitive Metals
,”
Int. J. Plast.
,
20
(
11
), pp.
2027
2045
.
108.
Tomlinson
,
P.
,
Azizi-Alizamini
,
H.
,
Poole
,
W. J.
,
Sinclair
,
C. W.
, and
Gharghouri
,
M. A.
,
2013
, “
Biaxial Deformation of the Magnesium Alloy AZ80
,”
Metall. Mater. Trans. A
,
44
(
7
), pp.
2970
2983
.
109.
Liu
,
G. R.
, and
Gu
,
Y. T.
,
2005
,
An Introduction to Meshfree Method and Their Programming
,
Springer Science & Business Media
, New York.
110.
Sethuraman
,
R.
, and
Reddy
,
C. S.
,
2004
, “
Pseudo Elastic Analysis of Material Non‐Linear Problems Using Element Free Galerkin Method
,”
J. Chin. Inst. Eng.
,
27
(
4
), pp.
505
516
.
111.
Gu
,
Y. T.
,
2008
, “
An Elasto-Plastic Analysis of Solids by the Local Meshless Method Based on MLS
,”
Int. J. Mod. Phys. B
,
22
(
31/32
), pp.
5780
5786
.
112.
Gu
,
Y. T.
,
Wang
,
Q. X.
,
Lam
,
K. Y.
, and
Dai
,
K. Y.
,
2007
, “
A Pseudo-Elastic Local Meshless Method for Analysis of Material Nonlinear Problems in Solids
,”
Eng. Anal. Bound. Elem.
,
31
(
9
), pp.
771
782
.
113.
Dai
,
K. Y.
,
Liu
,
G. R.
,
Han
,
X.
, and
Li
,
Y.
,
2006
, “
Inelastic Analysis of 2D Solids Using a Weak-Form RPIM Based on Deformation Theory
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
33–36
), pp.
4179
4193
.
114.
Pozo
,
L. P.
,
Perazzo
,
F.
, and
Angulo
,
A.
,
2009
, “
A Meshless FPM Model for Solving Nonlinear Material Problems With Proportional Loading Based on Deformation Theory
,”
Adv. Eng. Software
,
40
(
11
), pp.
1148
1154
.
115.
Tu
,
W.
,
Gu
,
Y. T.
, and
Wen
,
P. H.
,
2012
, “
Effective Shear Modulus Approach for Two Dimensional Solids and Plate Bending Problems by Meshless Point Collocation Method
,”
Eng. Anal. Bound. Elem.
,
36
(
5
), pp.
675
684
.
116.
Jankowska
,
M. A.
, and
Kolodziej
,
J. A.
,
2015
, “
On the Application of the Method of Fundamental Solutions for the Study of the Stress State of a Plate Subjected to Elastic—Plastic Deformation
,”
Int. J. Solids Struct.
,
67–68
, pp.
139
150
.
117.
Elleithy
,
W.
,
2008
, “
Analysis of Problems in Elasto-Plasticity Via an Adaptive FEM-BEM Coupling Method
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
45–48
), pp.
3687
3701
.
118.
Elleithy
,
W.
, and
Langer
,
U.
,
2008
, “
Efficient Elasto-Plastic Analysis Via an Adaptive Finite Element-Boundary Element Coupling Method
,”
30th International Conference on Boundary Elements and Other Mesh Reduction Methods
, New Forest, UK, Sept. 12–14, pp.
229
238
.
119.
Elleithy
,
W.
, and
Grzhibovskis
,
R.
,
2009
, “
An Adaptive Domain Decomposition Coupled Finite Element–Boundary Element Method for Solving Problems in Elasto-Plasticity
,”
Int. J. Numer. Methods Eng.
,
79
(
8
), pp.
1019
1040
.
120.
Cui
,
X. Y.
,
Liu
,
G. R.
,
Li
,
G. Y.
,
Zhang
,
G. Y.
, and
Sun
,
G. Y.
,
2009
, “
Analysis of Elastic-Plastic Problems Using Edge-Based Smoothed Finite Element Method
,”
Int. J. Pressure Vessels Piping
,
86
(
10
), pp.
711
718
.
121.
Jahed
,
H.
,
Farshi
,
B.
, and
Hosseini
,
M.
,
2006
, “
Fatigue Life Prediction of Autofrettage Tubes Using Actual Material Behaviour
,”
Int. J. Pressure Vessels Piping
,
83
(
10
), pp.
749
755
.
122.
Jahed
,
H.
,
Farshi
,
B.
, and
Hosseini
,
M.
,
2007
, “
The Actual Unloading Behavior Effect on Thermo-Mechanical Stress Intensity Factor and Life of Autofrettage Tubes
,”
Int. J. Fatigue
,
29
(
2
), pp.
360
369
.
123.
Levy
,
C.
,
Perl
,
M.
, and
Kotagiri
,
S.
,
2006
, “
The Bauschinger Effect's Influence on the SIFs of Multiple Longitudinal Coplanar Cracks in Autofrettaged Pressurized Cylinders
,”
Eng. Fract. Mech.
,
73
(
13
), pp.
1814
1825
.
124.
Levy
,
C.
, and
Perl
,
M.
,
2005
, “
The Influence of Autofrettage With Bauschinger Effect on the SIFs of Multiple Longitudinal Coplanar Cracks in Pressurized Cylinder
,”
ASME
Paper No. PVP2005-71112.
125.
Ma
,
Q.
,
Levy
,
C.
, and
Perl
,
M.
,
2008
, “
The Bauschinger Effect on 3-D SIFs for Networks of Radial and Longitudinally-Coplanar Semi-Elliptical Internal Surface Cracks in Autofrettaged Pressurized Thick-Walled Cylinders
,”
Comput. Model. Eng. Sci.
,
29
(
2
), pp.
95
110
.
126.
Perl
,
M.
,
Levy
,
C.
, and
Rallabhandy
,
V.
,
2006
, “
The Influence of the Bauschinger Effect on 3D Stress Intensity Factors for Internal Radial Cracks in a Fully or Partially Autofrettaged Gun Barrel
,”
ASME J. Pressure Vessel Technol.
,
128
(
2
), pp.
233
239
.
127.
Perl
,
M.
,
Levy
,
C.
, and
Rallabhandy
,
V.
,
2005
, “
The Influence of the Bauschinger Effect on the Stress Intensity Factors for a Radially Cracked Autofrettaged Thick-Walled Cylinder
,”
ASME
Paper No. PVP2005-71113.
128.
Perl
,
M.
,
Levy
,
C.
, and
Rallabhandy
,
V.
,
2006
, “
The Bauschinger Effect's Impact on the 3-D Combined SIFs for Radially Cracked Fully or Partially Autofrettaged Thick-Walled Cylinders
,”
Comput. Model. Eng. Sci.
,
11
(
1
), pp.
37
48
.
129.
Ma
,
Q.
,
Levy
,
C.
, and
Perl
,
M.
,
2015
, “
The Bauschinger Effect's Influence on the Stress Intensity Factors of a Semi-Elliptical Crack Emanating From an Erosion at the Bore of a Fully Autofrettaged Pressurized Cylinder
,”
ASME J. Pressure Vessel Technol.
,
137
(
4
), p.
041403
.
130.
Ma
,
Q.
,
Levy
,
C.
, and
Perl
,
M.
,
2010
, “
Stress Intensity Factors for Partially Autofrettaged Pressurized Thick-Walled Cylinders Containing Closely and Densely Packed Cracks
,”
ASME J. Pressure Vessel Technol.
,
132
(
5
), p.
051203
.
131.
Ma
,
Q.
,
Levy
,
C.
, and
Perl
,
M.
,
2015
, “
The Effects of Crack Ellipticity on the Mode I SIFs of a Simulated Eroded Pressurized Cylinder
,”
Procedia Eng.
,
130
, pp.
711
730
.
132.
Levy
,
C.
,
Perl
,
M.
, and
Ma
,
Q.
,
2015
, “
Crack Non-Circularity and Finite Erosion Effects on the 3D SIFs of a Bauschinger Modified Pressurized Thick-Walled Cylinder
,”
ASME
Paper No. PVP2015-45006.
133.
Ma
,
Q.
,
Levy
,
C.
, and
Perl
,
M.
,
2011
, “
A Finite Element Study of the Effect of Partial Autofrettage on the Fatigue Life of Thick-Walled Cylinders Containing Erosions and Cracks
,”
ASME
Paper No. PVP2011-57004.
134.
Ma
,
Q.
,
Levy
,
C.
, and
Perl
,
M.
,
2012
, “
The Impact of the Bauschinger Effect on Stress Concentrations and Stress Intensity Factors for Eroded Autofrettaged Thick Cylindrical Pressure Vessels
,”
ASME J. Pressure Vessel Technol.
,
134
(
2
), p.
021204
.
135.
Ma
,
Q.
,
Levy
,
C.
, and
Perl
,
M.
,
2013
, “
A Study of the Combined Effects of Erosions, Cracks and Partial Autofrettage on the Stress Intensity Factors of a Thick Walled Pressurized Cylinder
,”
ASME J. Pressure Vessel Technol.
,
135
(
4
), p.
041403
.
136.
Ma
,
Q.
, and
Levy
,
C.
, and Perl, M.,
2014
, “
The Combined Effect of a Finite Axial Erosion With Bauschinger Modified Autofrettage on the 3D SIFs of Pressurized Cylinders
,”
ASME
Paper No. PVP2014-28033.
137.
Pu
,
S. L.
,
Hussain
,
M. A.
,
Lewis
,
J. C.
, and
Sines
,
G.
,
1983
, “
Stress-Intensity Factors for Radial Cracks in a Partially Autofrettaged Thick-Walled Cylinder
,”
Fracture Mechanics: 14th Symposium—I: Theory and Analysis
, Manufacturing Technology Division, Wright Patterson Air Force Base, OH, pp.
I-194
I215
.
138.
Phillips
,
J. L.
,
1974
, “
Sleeve Coldworking of Fastener Holes
,” Air Force Materials Lab, Wright Patterson Air Force Base, OH, Report No. AFML-TR-74-10.
139.
Fu
,
Y.
,
Ge
,
E.
,
Su
,
H.
,
Xu
,
J.
, and
Li
,
R.
,
2015
, “
Cold Expansion Technology of Connection Holes in Aircraft Structures: A Review and Prospect
,”
Chin. J. Aeronaut.
,
28
(
4
), pp.
961
973
.
140.
Jahed
,
H.
,
Lambert
,
S. B.
, and
Dubey
,
R. N.
,
2000
, “
Variable Material Property Method in the Analysis of Cold-Worked Fastener Holes
,”
J. Strain Anal. Eng. Des.
,
35
(
2
), pp.
137
142
.
141.
Poolsuk
,
S.
, and
Sharpe
,
W. N.
,
1978
, “
Measurement of the Elastic-Plastic Boundary Around Coldworked
,”
ASME J. Appl. Mech.
,
45
(
3
), pp.
515
520
.
142.
Carter
,
A. E.
, and
Hanagud
,
S.
,
1975
, “
Stress Corrosion Susceptibility of Stress-Coined Fastener Holes in Aircraft Structures
,”
Am. Inst. Aeronaut. Astronaut. J.
,
13
(
7
), pp.
858
863
.
143.
Chang
,
J.
,
1975
, “
Analytical Prediction of Fatigue Crack Growth at Cold-Worked Fastener Holes
,”
AIAA
Paper No. AIAA-75-805.
144.
Rich
,
D. L.
, and
Impellizzeri
,
L. F.
,
1977
, “
Fatigue Analysis of Cold-Worked and Interference Fit Fastener Holes
,”
Cyclic Stress-Strain and Plastic Deformation Aspects of Fatigue Crack Growth
, American Society for Testing and Materials, Philadelphia, PA, pp.
153
175
.
145.
Potter
,
R. M.
,
Ting
,
T. W.
, and
Grandt
,
A. F.
,
1978
, “
An Analysis of Residual Stresses and Displacements Due to Radial Expansion of Fastener Holes
,” U.S. Air Force Materials Lab, Metals and Ceramics Division, Wright Patterson Air Force Base, OH, Technical Report No.
AFML-TR-79-4048
.
You do not currently have access to this content.