This contribution deals with the determination of the reference temperature of A533 Cl.1 steel using miniaturized specimens. The dimensions of the miniaturized specimens used were 3 × 4 × 27 mm (thickness × width × length). This specimen type allows utilizing a limited amount of test material or the broken halves of precracked Charpy or larger specimens. The test material comes from the broken halves of 0.5 T SE(B) specimens previously tested for the determination of the reference temperature at Ciemat, Madrid. The fracture toughness tests were performed in the transition region of the steel according to the recommendations of the standard ASTM E1921 and according to Wallin's recommended temperature range of miniaturized specimens. The reference temperature of the Master Curve was very similar to the ones obtained from three-point-bend specimens of sizes 0.2 T, 0.4 T, and 0.5 T. The results obtained confirm a necessity to conduct tests at low temperatures and to test a sufficient number of specimens in order to generate enough valid data for the determination of the reference temperature.

References

1.
Corwin
,
W. R.
,
Rosinski
,
S. T.
, and
van Walle
,
E.
,
1998
, “
Small Specimen Test Techniques
,” ASTM International, West Conshohocken, PA, p. 626, Standard No. STP1329.
2.
Sokolov
,
M. A.
,
Landes
,
J. D.
, and
Lucas
,
G. E.
,
2002
, “
Small Specimen Test Techniques: 4th Volume
,” ASTM International, West Conshohocken, PA, p. 494, Standard No. STP1418.
3.
Sokolov
,
M. A.
,
2009
, “
Small Specimen Test Techniques: 5th Volume
,” ASTM International, West Conshohocken, PA, p. 260, Standard No. STP1502.
4.
Smida
,
T.
,
Babjak
,
J.
, and
Dlouhy
,
I.
,
2010
, “
Prediction of Fracture Toughness Temperature Dependance From Tensile Test Parameters
,”
Met. Mater.
,
48
(
6
), pp.
345
352
.
5.
Lucas
,
G. E.
,
Odette
,
G. R.
,
Matsui
,
H.
,
Möslang
,
A.
,
Spätig
,
P.
,
Rensman
,
J.
, and
Yamamoto
,
T.
,
2007
, “
The Role of Small Specimen Test Technology in Fusion Materials Development
,”
J. Nucl. Mater.
,
367–370
(
Part B
), pp.
1549
1556
.
6.
ASTM
,
2014
, “
Standard Test Method for Determination of Reference Temperature, T0, for Ferritic Steels in the Transition Range
,” Vol. 03.01, ASTM International, West Conshohocken, PA, Standard No. ASTM E1921-14a.
7.
Wallin
,
K.
,
1984
, “
The Scatter in KIC-Results
,”
Eng. Fract. Mech.
,
19
(
6
), pp.
1085
1093
.
8.
Lucon
,
E.
,
Scibetta
,
M.
,
Chaouadi
,
R.
, and
van Walle
,
E.
,
2002
, “
Fracture Toughness Measurements in the Transition Region Using Sub-Size Precracked Charpy and Cylindrical Bar Specimens
,”
Small Specimen Test Techniques
, Vol.
4
,
M. A.
Sokolov
,
J. D.
Landes
, and
G. E.
Lucas
, eds.,
ASTM International
,
Chelsea
, ME, pp.
3
17
.
9.
Wallin
,
K.
,
Planman
,
T.
,
Valo
,
M.
, and
Rintamaa
,
R.
,
2001
, “
Applicability of Miniature Size Bend Specimens to Determine the Master Curve Reference Temperature T0
,”
Eng. Fract. Mech.
,
68
(
6
), pp.
1265
1296
.
10.
German Institute for Standardization,
1991
, “
Notched Bar Impact Testing of Metallic Materials Using Test Pieces Other Than ISO Test Pieces
,” German Institute for Standardization, Berlin, Standard No. DIN 50 115.
11.
Serrano
,
M.
,
2007
, “
Evaluación Computacional del Efecto de la Pérdida de Constricción en la Tenacidad de Fractura de la Vasija de Reactores Nucleares
,” Ph.D. thesis, Polytechnical University of Madrid, Madrid, Spain.
12.
International Atomic Energy Agency
,
2005
, “
Application of Surveillance Programme Results to Reactor Pressure Vessel Integrity Assessment
,” International Atomic Energy Agency, Vienna, Austria, Report No.
IAEA-TECDOC-1435
.
13.
International Atomic Energy Agency
,
2005
, “
Guidelines for Application of the Master Curve Approach to Reactor Pressure Vessel Integrity
,” International Atomic Energy Agency, Vienna, Austria, Technical Reports Series No.
429
.
14.
International Atomic Energy Agency
,
2009
, “
Master Curve Approach to Monitor Fracture Toughness of Reactor Pressure Vessels in Nuclear Power Plants
,” International Atomic Energy Agency, Vienna, Austria, Technical Reports Series No.
1631
.
15.
Brumovsky
,
M.
,
Davies
,
L. M.
,
Kryukov
,
A.
,
Lyssakov
,
V. N.
, and
Nanstad
,
R. K.
,
2001
, “
Reference Manual on the IAEA JRQ Correlation Monitor Steel for Irradiation Damage Studies
,” International Atomic Energy Agency, Vienna, Austria, Report No.
IAEA-TECDOC-1230
.
16.
Odette
,
G. R.
,
Edsinger
,
K.
,
Lucas
,
G. E.
, and
Donahue
,
E.
,
1998
, “
Developing Fracture Assessment Methods for Fusion Reactor Materials With Small Specimens
,”
Small Specimen Test Techniques
,
W. R.
Corwin
,
S. T.
Rosinski
, and
W.
van Walle
, eds.,
ASTM
,
Philadelphia, PA
, pp.
298
327
.
17.
Serrano
,
M.
,
Fernández
,
P.
, and
Laneña
,
J.
,
2007
, “
Fracture Toughness Evaluation of Eurofer97 by Testing Small Specimens
,”
Small Specimen Test Techniques
, Vol.
5
,
M. A.
Sokolov
, ed.,
ASTM International
,
Dayton, OH
, pp.
114
121
.
18.
Chlup
,
Z.
, and
Dlouhy
,
I.
,
2002
, “
Micromechanical Aspects of Constraint Effect at Brittle Fracture Initiation
,”
Transferability of Fracture Mechanical Characteristics
,
I.
Dlouhy
, ed.,
Kluwer
, Dordrecht, The Netherlands, pp.
65
78
.
19.
Kasada
,
R.
,
Ono
,
H.
, and
Kimura
,
A.
,
2006
, “
Small Specimen Test Technique for Evaluating Fracture Toughness of Blanket Structural Materials
,”
Fusion Eng. Des.
,
81
(
8–14
), pp.
981
986
.
20.
Scibetta
,
M.
,
Lucon
,
E.
, and
van Walle
,
E.
,
2002
, “
Optimum Use of Broken Charpy Specimens From Surveillance Programs for the Application of the Master Curve Approach
,”
Int. J. Fract.
,
116
(
3
), pp.
231
244
.
21.
Joyce
,
J. A.
, and
Tregoning
,
R. L.
,
2005
, “
Determination of Constraint Limits for Cleavage Initiated Toughness Data
,”
Eng. Fract. Mech.
,
72
(
10
), pp.
1559
1579
.
22.
Stratil
,
L.
,
Hadraba
,
H.
,
Bursik
,
J.
, and
Dlouhy
,
I.
,
2011
, “
Comparison of Microstructural Properties and Charpy Impact Behaviour Between Different Plates of the Eurofer97 Steel and Effect of Isothermal Ageing
,”
J. Nucl. Mater.
,
416
(
3
), pp.
311
317
.
You do not currently have access to this content.