This paper investigates the effect of initial residual stress and prestrain on residual stresses due to laser shock peening for Alloy 600 using numerical simulation. For simulation, the strain rate dependent Johnson–Cook hardening model with a Mie–Grüneisen equation of state is used. Simulation results are compared with published experimental data, showing good agreement. It is found that the laser shock peening (LSP) process is more effective for higher initial tensile residual stress and for larger initial prestrain in terms of compressive stress at the near surface. However, the effective depth decreases with increasing initial tensile residual stress and initial prestrain.
Issue Section:
Materials and Fabrication
References
1.
EPRI,
1994
, “Material Reliability Program: PWSCC of Alloy 600 Materials in PWR Primary System Penetrations
,” Electric Power Research Institute, Palo Alto, CA, Report No. TR-103696.2.
EPRI,
2006
, “Program on Technology Innovation: An Evaluation of Surface Stress Improvement Technologies for PWSCC Mitigation of Alloy 600 Nuclear Components: Materials Reliability Program (MRP-162)
,” Electric Power Research Institute, Palo Alto, CA, Report No. 1011806.3.
EPRI,
2012
, “Materials Reliability Program: Technical Basis for Primary Water Stress Corrosion Cracking Mitigation by Surface Stress Improvement (MRP-267, Revision 1)
,” Electric Power Research Institute, Palo Alto, CA, Report No. 1011806.4.
Ding
, K.
, and Ye
, L.
, 2006
, Laser Shock Peening Performance and Process Simulation
, CRC Press
, Boca Raton, FL
.5.
Telang, A., Gill, A. S., Teysseyre, S., Mannava, S. R., Qian, D., and Vasudevan, V. K., 2015, “
Effect of Laser Shock Peening on SCC Behavior of Alloy 600 in Tetrathionate Solution
,” Corros. Sci.
, 90
, pp. 434–444.6.
Chen
, H. L.
, Rankin
, J.
, Hackel
, L.
, Frederick
, G.
, Hickling
, J.
, and Findlan
, S.
, 2004
, “Laser Peening of Alloy 600 to Improve Intergranular Stress Corrosion Cracking Resistance in Power Plants
,” Sixth International EPRI Conference on Welding and Repair Technology for Power Plants, Sandestin, Florida, June 17, Paper No. UCRL-CONF-203826
.7.
Yoda
, M.
, Mukai
, N.
, Ochiai
, M.
, Tamura
, M.
, Okada
, S.
, Sato
, K.
, Kimura, M., Sano, Y., Saito, N., Shima, S., and Yamamoto, T., 2004
, “Laser-Based Maintenance and Repair Technologies for Reactor Components
,” ASME
Paper No. ICONE-12-49238.8.
Yoda
, M.
, and Newton
, B.
, 2008
, “Underwater Laser Peening
,” Eighth International
EPRI
Conference, Fort Myers, FL, June 18–20.9.
Ballard
, P.
, 1991
, “Contraintes Résiduelles Induites par Impact Rapide—Application au Choc-Laser
,” Ph.D. thesis, Ecole Polytechnique, Palaiseau, France.10.
Braisted
, W.
, and Brackman
, R.
, 1999
, “Finite Element Simulation of Laser Shock Peeing
,” Int. J. Fatigue
, 21
(7
), pp. 719
–724
.11.
Ding
, K.
, and Ye
, L.
, 2006
, “Simulation of Multiple Laser Shock Peening of a 35CD4 Steel Alloy
,” Mater. Process. Technol.
, 178
(1–3
), pp. 162
–169
.12.
Peyre
, P.
, Sollier
, A.
, Chaieb
, I.
, Berthe
, L.
, Bartnicki
, E.
, Braham
, C.
, and Fabbro, R., 2003
, “FEM Simulation of Residual Stresses Induced by Laser Peening
,” Eur. Phys. J. Appl. Phys.
, 23
(2
), pp. 83
–88
.13.
Ocana
, J. L.
, Morales
, M.
, and Molpepceres
, C.
, 2004
, “Numerical Simulation of Surface Deformation and Residual Stresses Fields in Laser Shock Processing Experiments
,” Appl. Surf. Sci.
, 238
(1–4
), pp. 242
–248
.14.
Peyre
, P.
, Chaieb
, I.
, and Braham
, C.
, 2007
, “FEM Calculation of Residual Stresses Induced by Laser Shock Processing in Stainless Steels
,” Modell. Simul. Mater. Sci. Eng.
, 15
(3
), pp. 205
–221
.15.
Peyre
, P.
, Berthe
, L.
, Vignal
, V.
, Popa
, I.
, and Baudin
, T.
, 2012
, “Analysis of Laser Shock Waves and Resulting Surface Deformations in an Al-Cu-Li Aluminium Alloy
,” J. Phys. D: Appl. Phys.
, 45
(33
), pp. 335
–304
.16.
Johnson
, G. R.
, and Cook
, W. H.
, 1985
, “Fracture Characteristics of Three Metals Subjected to Various Strains, Stain Rates, Temperatures and Pressures
,” Eng. Fract. Mech.
, 21
(1
), pp. 31
–48
.17.
Julan
, E.
, Stolz
, C.
, Taheri
, S.
, Peyre
, P.
, and Gilles
, P.
, 2013
, “Simulation of Laser Peening for Generation of a Surface Compressive Stresses
,” 21st Congress French Mechanics
, Bordeaux, France, Aug. 26–30.18.
Dassault, 2011, “
ABAQUS Version 6.11 User's Manual
,” Dassault Systemes Simulia, Providence, RI.19.
Fabbro
, R.
, Fournier
, J.
, Ballard
, P.
, Devaux
, D.
, and Virmont
, J.
, 1990
, “Physical Study of Laser-Produced Plasma in Confined Geometry
,” J. Appl. Phys.
, 68
(2
), pp. 775
–784
.20.
Warren
, A. W.
, Guo
, Y. B.
, and Chen
, S. C.
, 2008
, “Massive Parallel Laser Shock Peening: Simulation, Analysis and Validation
,” Int. J. Fatigue
, 30
(1
), pp. 188
–197
.21.
Johnson
, J. N.
, and Rhode
, R. W.
, 1971
, “Dynamic Deformation Twinning in Shock Loaded Iron
,” J. Appl. Phys.
, 42
(11
), pp. 4171
–4182
.22.
Special Metals,
2008
, “Inconel Alloy 600
,” Special Metals Corporation, New Hartford, NY, www.specialmetals.com.23.
Bugayev
, A. A.
, Gupta
, M. C.
, and Payne
, R.
, 2006
, “Laser Processing of Inconel 600 and Surface Structure
,” Opt. Lasers Eng.
, 44
(2
), pp. 102
–111
.24.
Rudland
, D.
, Chen
, Y.
, Zhang
, T.
, Wilkowski
, G.
, Broussard
, J.
, and White
, G.
, 2007
, “Comparison of Welding Residual Stress Solutions for Control Rod Drive Mechanism Nozzles
,” ASME
Paper No. PVP2007-26045.25.
Anderson
, C. E.
, Holmquist
, T. J.
, and Sharron
, T. R.
, 2005
, “Quantification of the Effect of Using the Johnson–Cook Damage Model in Numerical Simulations of Penetration and Perforation
,” International Symposium on Ballistics
, Vancouver, BC, Canada, Vol. 2
.26.
Lemons
, D. S.
, and Lund
, C. M.
, 1999
, “Thermodynamics of High Temperature, Mie–Grüneisen Solids
,” Am. J. Phys.
, 67
(12
), p. 1105
.Copyright © 2017 by ASME
You do not currently have access to this content.