This paper investigates the effect of initial residual stress and prestrain on residual stresses due to laser shock peening for Alloy 600 using numerical simulation. For simulation, the strain rate dependent Johnson–Cook hardening model with a Mie–Grüneisen equation of state is used. Simulation results are compared with published experimental data, showing good agreement. It is found that the laser shock peening (LSP) process is more effective for higher initial tensile residual stress and for larger initial prestrain in terms of compressive stress at the near surface. However, the effective depth decreases with increasing initial tensile residual stress and initial prestrain.

References

1.
EPRI,
1994
, “
Material Reliability Program: PWSCC of Alloy 600 Materials in PWR Primary System Penetrations
,” Electric Power Research Institute, Palo Alto, CA, Report No. TR-103696.
2.
EPRI,
2006
, “
Program on Technology Innovation: An Evaluation of Surface Stress Improvement Technologies for PWSCC Mitigation of Alloy 600 Nuclear Components: Materials Reliability Program (MRP-162)
,” Electric Power Research Institute, Palo Alto, CA, Report No. 1011806.
3.
EPRI,
2012
, “
Materials Reliability Program: Technical Basis for Primary Water Stress Corrosion Cracking Mitigation by Surface Stress Improvement (MRP-267, Revision 1)
,” Electric Power Research Institute, Palo Alto, CA, Report No. 1011806.
4.
Ding
,
K.
, and
Ye
,
L.
,
2006
,
Laser Shock Peening Performance and Process Simulation
,
CRC Press
,
Boca Raton, FL
.
5.
Telang, A., Gill, A. S., Teysseyre, S., Mannava, S. R., Qian, D., and Vasudevan, V. K., 2015, “
Effect of Laser Shock Peening on SCC Behavior of Alloy 600 in Tetrathionate Solution
,”
Corros. Sci.
,
90
, pp. 434–444.
6.
Chen
,
H. L.
,
Rankin
,
J.
,
Hackel
,
L.
,
Frederick
,
G.
,
Hickling
,
J.
, and
Findlan
,
S.
,
2004
, “
Laser Peening of Alloy 600 to Improve Intergranular Stress Corrosion Cracking Resistance in Power Plants
,” Sixth International EPRI Conference on Welding and Repair Technology for Power Plants, Sandestin, Florida, June 17,
Paper No. UCRL-CONF-203826
.
7.
Yoda
,
M.
,
Mukai
,
N.
,
Ochiai
,
M.
,
Tamura
,
M.
,
Okada
,
S.
,
Sato
,
K.
, Kimura, M., Sano, Y., Saito, N., Shima, S., and Yamamoto, T.,
2004
, “
Laser-Based Maintenance and Repair Technologies for Reactor Components
,”
ASME
Paper No. ICONE-12-49238.
8.
Yoda
,
M.
, and
Newton
,
B.
,
2008
, “
Underwater Laser Peening
,”
Eighth International
EPRI
Conference, Fort Myers, FL, June 18–20.
9.
Ballard
,
P.
,
1991
, “
Contraintes Résiduelles Induites par Impact Rapide—Application au Choc-Laser
,” Ph.D. thesis, Ecole Polytechnique, Palaiseau, France.
10.
Braisted
,
W.
, and
Brackman
,
R.
,
1999
, “
Finite Element Simulation of Laser Shock Peeing
,”
Int. J. Fatigue
,
21
(
7
), pp.
719
724
.
11.
Ding
,
K.
, and
Ye
,
L.
,
2006
, “
Simulation of Multiple Laser Shock Peening of a 35CD4 Steel Alloy
,”
Mater. Process. Technol.
,
178
(
1–3
), pp.
162
169
.
12.
Peyre
,
P.
,
Sollier
,
A.
,
Chaieb
,
I.
,
Berthe
,
L.
,
Bartnicki
,
E.
,
Braham
,
C.
, and Fabbro, R.,
2003
, “
FEM Simulation of Residual Stresses Induced by Laser Peening
,”
Eur. Phys. J. Appl. Phys.
,
23
(
2
), pp.
83
88
.
13.
Ocana
,
J. L.
,
Morales
,
M.
, and
Molpepceres
,
C.
,
2004
, “
Numerical Simulation of Surface Deformation and Residual Stresses Fields in Laser Shock Processing Experiments
,”
Appl. Surf. Sci.
,
238
(
1–4
), pp.
242
248
.
14.
Peyre
,
P.
,
Chaieb
,
I.
, and
Braham
,
C.
,
2007
, “
FEM Calculation of Residual Stresses Induced by Laser Shock Processing in Stainless Steels
,”
Modell. Simul. Mater. Sci. Eng.
,
15
(
3
), pp.
205
221
.
15.
Peyre
,
P.
,
Berthe
,
L.
,
Vignal
,
V.
,
Popa
,
I.
, and
Baudin
,
T.
,
2012
, “
Analysis of Laser Shock Waves and Resulting Surface Deformations in an Al-Cu-Li Aluminium Alloy
,”
J. Phys. D: Appl. Phys.
,
45
(
33
), pp.
335
304
.
16.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1985
, “
Fracture Characteristics of Three Metals Subjected to Various Strains, Stain Rates, Temperatures and Pressures
,”
Eng. Fract. Mech.
,
21
(
1
), pp.
31
48
.
17.
Julan
,
E.
,
Stolz
,
C.
,
Taheri
,
S.
,
Peyre
,
P.
, and
Gilles
,
P.
,
2013
, “
Simulation of Laser Peening for Generation of a Surface Compressive Stresses
,”
21st Congress French Mechanics
, Bordeaux, France, Aug. 26–30.
18.
Dassault, 2011, “
ABAQUS Version 6.11 User's Manual
,” Dassault Systemes Simulia, Providence, RI.
19.
Fabbro
,
R.
,
Fournier
,
J.
,
Ballard
,
P.
,
Devaux
,
D.
, and
Virmont
,
J.
,
1990
, “
Physical Study of Laser-Produced Plasma in Confined Geometry
,”
J. Appl. Phys.
,
68
(
2
), pp.
775
784
.
20.
Warren
,
A. W.
,
Guo
,
Y. B.
, and
Chen
,
S. C.
,
2008
, “
Massive Parallel Laser Shock Peening: Simulation, Analysis and Validation
,”
Int. J. Fatigue
,
30
(
1
), pp.
188
197
.
21.
Johnson
,
J. N.
, and
Rhode
,
R. W.
,
1971
, “
Dynamic Deformation Twinning in Shock Loaded Iron
,”
J. Appl. Phys.
,
42
(
11
), pp.
4171
4182
.
22.
Special Metals,
2008
, “
Inconel Alloy 600
,” Special Metals Corporation, New Hartford, NY, www.specialmetals.com.
23.
Bugayev
,
A. A.
,
Gupta
,
M. C.
, and
Payne
,
R.
,
2006
, “
Laser Processing of Inconel 600 and Surface Structure
,”
Opt. Lasers Eng.
,
44
(
2
), pp.
102
111
.
24.
Rudland
,
D.
,
Chen
,
Y.
,
Zhang
,
T.
,
Wilkowski
,
G.
,
Broussard
,
J.
, and
White
,
G.
,
2007
, “
Comparison of Welding Residual Stress Solutions for Control Rod Drive Mechanism Nozzles
,”
ASME
Paper No. PVP2007-26045.
25.
Anderson
,
C. E.
,
Holmquist
,
T. J.
, and
Sharron
,
T. R.
,
2005
, “
Quantification of the Effect of Using the Johnson–Cook Damage Model in Numerical Simulations of Penetration and Perforation
,”
International Symposium on Ballistics
, Vancouver, BC, Canada, Vol.
2
.
26.
Lemons
,
D. S.
, and
Lund
,
C. M.
,
1999
, “
Thermodynamics of High Temperature, Mie–Grüneisen Solids
,”
Am. J. Phys.
,
67
(
12
), p.
1105
.
You do not currently have access to this content.