China has very ambitious goals of expanding its commercial nuclear power by 30 GW within the decade and wishes to phase out fossil fuels emissions by 40–45% by 2020 (from 2005 levels). With over 50 new nuclear power plants under construction or planned and a design life of 60 years, any discussions on structural integrity become very timely. Although China adopted its nuclear technology from France or USA at present time, e.g., AP1000 of Westinghouse, the construction materials are primarily “Made in China.” Among all issues, both the accumulation of the knowledge base of the materials and structures used for the power plant and the technical capability of engineering personnel are imminent. This paper attempts to compile and assess the mechanical properties, Charpy V-notch impact energy, and fracture toughness of A508-3 steel used in Chinese nuclear reactor pressure vessels (RPVs). All data are collected from open literature and by no means complete. However, it provides a glimpse into how this domestically produced steel compares with western RPV steels such as USA A533B and Euro 20MnMoNi55.

References

1.
Zhou
,
S. L.
,
2006
, “
Nuclear Power Industry Development Strategy of China
,” Ph.D. thesis,
Zhongnan University
,
Changsha, China
(in Chinese).
3.
Nie
,
W.
,
Meng
,
X. F.
,
Zhang
,
Z. Q.
,
Zhu
,
L.
, and
Chen
,
Y. S.
,
2012
, “
Review on Nuclear Power Construction and Its Geotechnical Engineering
,”
J. Yangtze River Sci. Res. Inst.
,
29
(
1
), pp.
62
68
(in Chinese).10.3969/j.issn.1001-5485.2012.01.013
4.
ASME Code, Section XI
, 2010,
Rules for In-Service Inspection of Nuclear Power Plant Components
,
ASME
, New York.
5.
Li
,
C. L.
, and
Zhang
,
M. Q.
,
2008
, “
Overview of Reactor Pressure Vessel Steel in PWR Nuclear Power Plants
,”
Mater. Rev.
,
22
(
9
), pp.
65
68
(in Chinese).10.3321/j.issn:1005-023X.2008.09.018
6.
Chen
,
S. G.
,
1994
, “
Nuclear Reactor Pressure Vessel Steel and Manufacturing Processes
,”
Large Forg. Cast Parts
,
64
(2), pp.
25
34
(in Chinese).
7.
Spence
,
J.
, and
Nash
,
D. H.
,
2004
, “
Milestones in Pressure Vessel Technology
,”
Int. J. Pressure Vessels Piping
,
81
(
2
), pp.
89
118
.10.1016/j.ijpvp.2003.11.002
8.
Worral
,
G. M.
,
Buswell
,
J. T.
,
English
,
C. A.
,
Hetherington
,
M. G.
, and
Smith
,
G. D. W.
,
1987
, “
A Study of the Precipitation of Copper Particles in a Ferrite Matrix
,”
J. Nucl. Mater.
,
148
(
1
), pp.
107
114
.10.1016/0022-3115(87)90525-3
9.
Huang
,
J. Y.
,
Hwang
,
J. R.
, and
Yeh
,
J. J.
,
2004
, “
Dynamic Strain Aging and Grain Size Reduction Effects on the Fatigue Resistance of SA533B Steels
,”
J. Nucl. Mater.
,
324
(
2
), pp.
140
151
.10.1016/j.jnucmat.2003.09.009
10.
Chen
,
H. Y.
,
Du
,
J. Y.
, and
Deng
,
L. T.
,
2008
, “
The Comparison and Analysis of SA508 Series Steel Used For Nuclear Reactor Pressure Vessel Forgings
,”
Heavy Cast. Forg.
,
1
, pp.
1
3
(in Chinese).10.3969/j.issn.1004-5635.2008.01.001
11.
Li
,
Y. L.
,
Zhang
,
H. Q.
, and
Peng
,
B. C.
,
2010
, “
Development and Research Status of Nuclear Pressure Vessel Steels
,”
Pressure Vessels
,
27
(
5
), pp.
36
43
(in Chinese).10.3969/j.issn.1001-4837.2010.05.008
12.
ASME Code Section II
, 2010,
Standard Specification for Quenched and Tempered Vacuum-Treated Carbon and Alloy Steel Forgings for Pressure Vessels
,
ASME
, New York.
13.
Kim
,
M. C.
,
Lee
,
K. H.
, and
Lee
,
B. S.
,
2010
, “
Mechanical Properties of SA508 Gr.4N Model Alloys as a High Strength RPV Steel
,”
ASME PVP, Vol.
9
, pp.
143
148
.
14.
Fang
,
Y.
,
2011
, “
Fracture Toughness Prediction of Domestic A508-III Steel Based on Master Curve Approach and Its Application to Reactor Pressure Vessel P-T Curve
,” Master's thesis,
East China University
,
Shanghai
(in Chinese).
15.
Chinese Standard GB-T 13329-2006
,
2006
,
Low Temperature Metallic Materials—Tensile Testing
,
Chinese Standard
, Beijing, China.
16.
Wu
,
X. Y.
,
2005
, “
Effect of Neutron Irradiation on Brittlement for National A508-3 Steel
,” Master thesis,
Sichuan University
,
Chengdu
(in Chinese).
17.
ASTM E8M
, 2009,
Standard Test Methods for Tension Testing of Metallic Materials
,
ASTM
, West Conshohocken, PA.
18.
ASTM E21
, 2009,
Standard Test Methods for Elevated Temperature Tension Tests of Metallic Materials
,
ASTM
, West Conshohocken, PA.
19.
Hu
,
B. F.
,
1996
, “
Fracture Toughness of Large Cross-Section Nuclear Power Plant Pressure Vessel Ni-Cr-Mo-Mn Carbon Steel Forgings
,”
Iron Steel Res.
,
31
(
10
), pp.
35
39
(in Chinese).
20.
Zhong
,
W. H.
,
Yang
,
W.
, and
Lin
,
H.
,
2007
, “
Tensile Properties of Chinese A508-3 Steel
,”
China At. Energy Annu. Inst.
,
30
(
00
), pp.
249
253
(in Chinese).
21.
Zhang
,
Z.
,
Liu
,
C. D.
, and
Chen
,
W.
,
2002
, “
Static and Dynamic Fracture Toughness of Vessel Steel 508-3 Used for First Class Nuclear Reactor
,”
J. Iron Steel Res.
,
14
(
1
), pp.
69
73
(in Chinese).10.3321/j.issn:1001-0963.2002.01.017
22.
Chinese Standard GB/T 15443-95
, 1995,
Pressurized Water Reactor Pressure Vessel-The Principle of Selecting Materials and the Basic Requirements of the Materials
,
Chinese Standard
, Chengdu, China.
23.
Sherry
,
A. H.
,
Lidbury
,
D. P.
, and
Beardsmore
,
D. W.
,
2001
, “
Validation of Constraint Based Structural Integrity Assessment Methods
,” Final Report No. AEAT/RJCB/RD01329400/R003, AEA Technology, UK, pp.
19
23
.
24.
Aravind
,
K.
,
2009
, “
J-R Behavior of 20Mnmoni55 Pressure Vessel Steel
,” M. Tech. thesis,
Metallurgical and Materials Engineering
, Roll NO: 207MM112.
25.
Chen
,
Z. A.
,
Zeng
,
Z.
, and
Chao
,
Y. J.
,
2007
, “
Effect of Crack Depth on the Shift of the Ductile–Brittle Transition Curve of Steels
,”
Eng. Fract. Mech.
,
74
(
15
), pp.
2437
2448
.10.1016/j.engfracmech.2006.11.010
26.
ASTM E23
, 2012,
Standard Test Methods for Notched Bar Impact Testing of Metallic Materials
,
ASTM
, West Conshohocken, PA.
27.
Zheng
,
L. B.
,
Hu
,
B. F.
, and
Wang
,
Z. Q.
,
1999
, “
Nuclear Power Equipment SA 508-3 Steel Research
,”
Boiler Manuf.
,
36
(
3
), pp.
43
49
(in Chinese)
28.
Kong
,
F. T.
, and
Chen
,
Y. Y.
,
2011
, “
Effect of Double-Phase Area Heat Treatment on Impact Property and Impact Section of A508-3 Steel
,”
Heat Treat. Met.
,
36
(
11
), pp.
54
59
(in Chinese).
29.
Mo
,
H. J.
,
Wu
,
X. Y.
, and
Li
,
G. Y.
,
2009
, “
Methods of Measuring Dynamic Fracture Toughness on Reactor Pressure Vessel Material
,”
Prog. Rep. China Nucl. Sci. Technol.
,
1
(
4
), pp.
63
67
(in Chinese).
30.
Qiao
,
J. S.
,
Zhong
,
W. H.
, and
Yang
,
W.
,
2011
, “
Small Punch Test of the Domestic A508-3 Steel and Issue Argumentation
,”
J. North China Electr. Power Univ.
,
38
(
3
), pp.
106
111
(in Chinese).10.3969/j.issn.1007-2691.2011.03.022
31.
Nanstad
,
R. K.
, and
Mikhail
,
A. S.
,
1995
, “
Charpy Impact Test Results on Five Materials and NIST Verification Specimens Using Instrumented 2-mm and 8-mm Strikers
,”
Symposium on Pendulum Impact Machine: Procedures and Specimens for Verification
, ASTM, Paper No. STP 1248.
32.
Barry
,
H. R.
,
2012
, “
Characterization of A508/A533B Pressure Vessel Steel VHTR R&D FY12
,”
Technical Review Meeting
, pp.
22
24
.
33.
Valo
,
M.
,
Wallin
,
K.
,
Torronen
,
K.
, and
Ahlstrand
,
R.
,
1992
, “
Irradiation Response of the New IAEA Correlation Monitor Material JRQ Measured by Fracture Mechanical Properties
,” ASTM STP1125, pp.
203
215
.
34.
Zheng
,
L. B.
, and
Chen
,
J. Y.
,
1995
, “
Influence of Thermal Aging on Mechanical Properties of A533B Steel
,”
Boiler Manuf.
,
17
(
4
), pp.
72
78
(in Chinese).
35.
Chatterjee
,
S.
,
Sriharsha
,
H. K.
, and
Balakrishnan
,
K. S.
,
2004
, “
Utility and Procedure of Fracture Toughness Evaluation of Steels Through Master Curve Approach Using Charpy Impact Specimens
,”
Trans. Indian Inst. Met.
,
57
(
3
), pp.
225
240
.
36.
Bhowmika
,
S.
,
Chattopadhyaya
,
A.
, and
Bosea
,
T.
,
2011
, “
Estimation of Fracture Toughness of 20Mnmoni55 Steel in the Ductile to Brittle Transition Region Using Master Curve Method
,”
Nucl. Eng. Des.
,
241
(
8
), pp.
2831
2838
.10.1016/j.nucengdes.2011.05.033
37.
El-Fadaly
,
M. S.
,
El-Sarrage
,
T. A.
,
Eleiche
,
A. M.
, and
Dahl
,
W.
,
1995
, “
Fracture Toughness of 20Mnmoni55 Steel at Different Temperatures as Affected by Room-Temperature Pre-Deformation
,”
J. Mater. Process. Technol.
,
54
(
1–4
), pp.
159
165
.10.1016/0924-0136(95)01936-7
38.
Yoshimura
,
S.
, and
Yagawa
,
G.
,
1985
, “
Dynamic Fracture Mechanics With Electromagnetic Force and Its Application to Fracture Toughness Testing
,”
Engineering Fracture Mechanics
,
23
(1), pp.
265
286
.
39.
Ghoneim
,
M. M.
,
Nasreldin
,
A. M.
,
Elsayed
,
A. A.
,
Pachu
,
D.
, and
Hammad
,
F. H.
,
1996
, “
Instrumented Impact Properties of Some Advanced Nuclear Reactor Pressure Vessel Steels
,”
J. Mater. Eng. Perform.
,
5
(
3
), pp.
328
334
.10.1007/BF02649335
40.
Oldfield
,
W.
,
1975
,
Curve Fitting Impact Test Data: A Statistical Procedure
,
ASTM Standard News
, West Conshohocken, PA., pp.
24
29
.
41.
ASTM E1820
, 2006,
Standard Test Method for Measurement of Fracture Toughness
,
ASTM
, West Conshohocken, PA.
42.
ASTM E399
, 2012,
Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness KIC of Metallic Materials
,
ASTM
, West Conshohocken, PA.
43.
Ma
,
N.
,
Wang
,
L.
, and
Chen
,
Y.
,
2012
, “
A508-3 Steel Ductile-Brittle Transition Temperature Range Fracture Toughness Research
,”
Nucl. Power Eng.
,
33
(
2
), pp.
56
60
(in Chinese).
44.
Haggag
,
F. M.
,
1999
, “
Nondestructive and Localized Measurements of Stress–Strain Curves and Fracture Toughness of Ferritic Steels at Various Temperatures Using Innovative Stress–Strain Microproblem Technology
,” The U.S. Department of Energy, Report No. DE-FG02-96ER82115.
45.
Havel
,
R.
,
Vacek
,
M.
, and
Brumovsky
,
M.
, “
Fracture Properties of Irradiated A533B, Cl.1, A508, Cl.3, and 15Cr2NMFAA Reactor Pressure Vessel Steel
,”
Radiation Embrittlement of Nuclear Reactor Pressure Vessel Steels
, ASTM, Paper No. STP 1170, pp.
163
171
.
46.
Ortner
,
S. R.
,
2001
, “
The Shape of the Ductile-to-Brittle Transition
,” HSE, Report No. AEAT/R/NT/0381.
47.
Serrano
,
M.
,
Perosanz
,
F. J.
, and
Lapen
,
J.
,
2000
, “
Direct Measurement of Reactor Pressure Vessel Steels Fracture Toughness: Master Curve Concept and Instrumented Charpy-V Test
,”
Int. J. Pressure Vessels Piping
,
77
(
10
), pp.
605
612
.10.1016/S0308-0161(00)00033-8
48.
Bass
,
B. R.
,
Dickson
,
T. L.
, and
Williams
,
P. T.
,
2000
, “
Application of Statistically-Based KIC/KIA Fracture Toughness Models to PTS Assessments of Reactor Pressure Vessels
,” U.S. Nuclear Regulatory Commission Washington, DC, Report No. 20555-0001.
49.
Ericksonkirk
,
M.
,
Bass
,
B. R.
,
Dickson
,
T.
, and
Williams
,
P.
,
2006
, “
Probabilistic Fracture Mechanics—Models, Parameters, and Uncertainty Treatment Used in FAVOR Version 04.1
,” U.S. Nuclear Regulatory Commission Washington, DC, Report No. 20555-0001
50.
Haggag
,
F. M.
, and
Nanstad
,
R. K.
,
1989
, “
Estimating Fracture Toughness Using Tension or Ball Indentation Tests and a Modified Critical Strain Model
,”
Innovative Approaches to Irradiation Damage, and Fracture Analysis
, Vol.
170
,
D. L.
Marriott
,
T. R.
Mager
, and
W. H.
Bamford
, eds.,
ASME PVP
, Honolulu, HI, pp.
570
586
.
51.
Von
,
F. C.
, and
Sattari
,
F.
,
2012
, “
Implementation of the Master Curve Method in ProSACC
,” Report No. 2012: 07.
52.
Server
,
W.
,
Rosinski
,
S.
,
Lott
,
R.
,
Kim
,
C.
, and
Weakland
,
D.
,
2002
, “
Application of Master Curve Fracture Toughness for Reactor Pressure Vessel Integrity Assessment in the USA
,”
Int. J. Pressure Vessels Piping
,
79
(
8–10
), pp.
701
713
.10.1016/S0308-0161(02)00073-X
53.
Bhowmik
,
S.
,
Sahoo
,
P.
, and
Acharyya
,
S. K.
,
2012
, “
Application and Comparative Study of the Master Curve Methodology for Fracture Toughness Characterization of 20Mnmoni55 Steel
,”
Mater. Des.
,
39
(
8
), pp.
309
317
.10.1016/j.matdes.2012.02.050
54.
Heerens
,
J.
, and
Hellmann
,
D.
,
2002
, “
Development of the Euro Fracture Toughness Dataset
,”
Eng. Fract. Mech.
,
69
(
4
), pp.
421
449
.10.1016/S0013-7944(01)00067-4
55.
Wallin
,
K.
,
2002
, “
Master Curve Analysis of the ‘‘Euro’’ Fracture Toughness Dataset
,”
Eng. Fract. Mech.
,
69
(
4
), pp.
451
481
.10.1016/S0013-7944(01)00071-6
56.
Scibetta
,
M.
,
Lucon
,
E.
, and
van Walle
,
E.
,
2002
, “
Optimum Use of Broken Charpy Specimens From Surveillance Programs for the Application of the Master Curve Approach
,”
Int. J. Fract.
,
116
(
3
), pp.
231
244
.10.1023/A:1020165900918
57.
ASME Boiler and Pressure Vessel Code, Section III, Division 1-NB, NB 2300, 2010, “Fracture Toughness Requirements for Material,” ASME, New York.
58.
ASME Boiler and Pressure Vessel Code, Section III, Division 1-NB, NB 2331, 2010, “Fracture Toughness Requirements for Material,” ASME, New York.
59.
Wallin
,
K.
,
1999
, “
The Master Curve Method: A New Concept for Brittle Fracture
,”
Int. J. Mater. Prod.
,
14
(
2
), pp.
42
54
.10.1504/IJMPT.1999.036276
60.
Sattari-Far
,
I.
, and
Wallin
,
K.
,
2005
, “
Application of Master Curve Methodology for Structural Integrity Assessments of Nuclear Components
,” SKI Report No. SKI-R-05/55-SE.
61.
Code Case N-629, Cases of the ASME Code
.
62.
Code Case N-63 I, Cases of the ASME Code
.
63.
Krauss
,
G.
, and
Marder
,
A. R.
,
1971
, “
The Morphology of Martensite in Iron Alloys
,”
Metall. Trans.
,
2
(
9
), pp.
2343
2357
.10.1007/BF02814873
64.
Zhou
,
Y. Z.
,
Zhang
,
M. Y.
, and
Chen
,
T. Q.
,
1981
,
Effect of Chemical Composition on the Fracture Toughness of Steel
,
Journal of Wuhan University Technology
,
Wuhan, China
, pp.
67
77
(in Chinese).
You do not currently have access to this content.