This paper aims to deal with plastic collapse assessment for thick vessels under internal pressure, thick tubes in plane strain conditions, and thick spheres, taking into consideration various strain hardening effects and large deformation aspect. In the framework of von Mises’ criterion, strain hardening manifestation is described by various rules such as isotropic and/or kinematic laws. To predict plastic collapse, sequential limit analysis, which is based on the upper bound formulation, is used. The sequential limit analysis consists in solving sequentially the problem of the plastic collapse, step by step. In the first sequence, the plastic collapse of the vessel corresponds to the classical limit state of the rigid perfectly plastic behavior. At the end of each sequence, the yield stress and/or back-stresses are updated with or without geometry updating via displacement velocity and strain rates. The updating of all these quantities (geometry and strain hardening variables) is adopted to conduct the next sequence. As a result of this proposal, we get the limit pressure evolution, which could cause the plastic collapse of the device for different levels of hardening and also hardening variables such as back-stresses with respect to the geometry change.

1.
Horne
,
M. R.
, and
Merchant
,
W.
, 1965,
The Stability of Frames
,
Maxwell
,
London
.
2.
Hwan
,
C. L.
, 1992, “
Large Plastic Deformation by Sequential Limit Analysis: A Finite Element Approach With Application in Metal Forming
,” Ph.D. thesis, University of Michigan, Ann Arbor, MI.
3.
Yang
,
W. H.
, 1993, “
Large Deformation of Structures by Sequential Limit Analysis
,”
Int. J. Solids Struct.
0020-7683,
30
(
7
), pp.
1001
1013
.
4.
Huh
,
H.
,
Lee
,
C. H.
, and
Yang
,
W. H.
, 1999, “
A General Algorithm for Plastic Flow Simulation by Finite Element Analysis
,”
Int. J. Solids Struct.
0020-7683,
36
, pp.
1193
1207
.
5.
Huh
,
H.
,
Kim
,
K. P.
, and
Kim
,
H. S.
, 2001, “
Collapse Simulation of Tubular Structures Using a Finite Element Limit Analysis Approach and Shell Elements
,”
Int. J. Mech. Sci.
0020-7403,
43
, pp.
2171
2187
.
6.
Kim
,
K. P.
, and
Huh
,
H.
, 2006, “
Dynamic Limit Analysis Formulation for Impact Simulation of Structural Members
,”
Int. J. Solids Struct.
0020-7683,
43
, pp.
6488
6501
.
7.
Leu
,
S. Y.
, 2007, “
Analytical and Numerical Investigation of Strain-Hardening Vicscoplastic Thick-Walled Cylinders Under Internal Pressure Using Sequential Limit Analysis
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
196
, pp.
2713
2722
.
8.
Leu
,
S. Y.
, 2008, “
Limit Analysis of Strain-Hardening Viscoplastic Cylinders Under Internal Pressure by Using the Velocity Control: Analytical and Numerical Investigation
,”
Int. J. Mech. Sci.
0020-7403,
50
, pp.
1578
1585
.
9.
De Saxcé
,
G.
, 1992, “
Une généralisation de l’inégalité de Fenchel et ses applications aux lois constitutives
,”
C. R. Acad. Sci., Ser. II: Mec., Phys., Chim., Sci. Terre Univers
0764-4450,
314
, pp.
125
129
.
10.
De Saxcé
,
G.
,
Tritsch
,
J. B.
, and
Hjiaj
,
M.
, 2000, “
Shakedown of Elastic–Plastic Structures With Nonlinear Kinematic Hardening by the Bipotential Approach
,”
Inelastic Analysis of Structures Under Variable Loads
,
D.
Weichert
and
G.
Maier
, eds.,
Kluwer Academic
,
The Netherlands
, pp.
167
182
.
11.
Bouby
,
C.
,
De Saxcé
,
G.
, and
Tritch
,
J. B.
, 2006, “
A Comparison Between Analytical Calculations of the Shakedown Load by the Bipotential Approach and Step-by-Step Computations for Elastoplastic Materials With Non Linear Kinematic Hardening
,”
Int. J. Solids Struct.
0020-7683,
43
, (Issue 9), pp.
2670
2692
.
12.
Bouby
,
C.
,
De Saxcé
,
G.
, and
Tritch
,
J. B.
, 2009, “
Shakedown Analysis: Comparison Between Models With The Linear Unlimited, Linear Limited and Non-Linear Kinematic Hardening
,”
Mech. Res. Commun.
0093-6413,
36
, pp.
556
562
.
13.
De Saxcé
,
G.
, and
Bousshine
,
L.
, 1998, “
The Limit Analysis Theorems for the Implicit Standard Materials: Application to the Unilateral Contact With Dry Friction and the Non Associated Flow Rules in Soils and Rocks
,”
Int. J. Mech. Sci.
0020-7403,
40
, pp.
387
398
.
14.
Bousshine
,
L.
,
Chaaba
,
A.
, and
De Saxcé
,
G.
, 2002, “
Plastic Limit Load of Plane Frames With Frictional Contact Supports
,”
Int. J. Mech. Sci.
0020-7403,
44
, pp.
2189
2216
.
15.
Chaaba
,
A.
,
Bousshine
,
L.
, and
De Saxcé
,
G.
, “
Non Associated Limit Analysis of Rigid Perfectly Plastic Material by the Bipotential and Finite Element Method
,”
ASME J. Appl. Mech.
0021-8936,
77
, pp.
031016
-
11
.
16.
Bousshine
,
L.
,
Chaaba
,
A.
, and
De Saxcé
,
G.
, 2001, “
Softening in Stress-Strain Curve for Drücker-Prager Non Associated Plasticity
,”
Int. J. Plast.
0749-6419,
17
, pp.
21
46
.
17.
Bousshine
,
L.
,
Chaaba
,
A.
, and
De Saxcé
,
G.
, 2003, “
A New Approach to Shakedown Analysis for Non Standard Elastoplastic Materials by the Bipotential Theory
,”
Int. J. Plast.
0749-6419,
19
, pp.
583
598
.
18.
Chaaba
,
A.
, “
Plastic Collapse in Presence of Non Linear Kinematic Strain Hardening by the Bipotential and the Sequential Limit Analysis Approaches
,”
Mech. Res. Commun.
0093-6413, submitted.
19.
Kleemola
,
H. J.
, and
Nieminen
,
M. A.
, 1974, “
On the Strain-Hardening Parameters of Metals
,”
Metall. Trans.
0026-086X,
5
(
8
), pp.
1863
1866
.
20.
Prager
,
W.
, 1958,
Problèmes de plasticité théorique
,
Dunod
,
Paris
.
21.
Armstrong
,
P. J.
, and
Frederick
,
C. O.
, 1966, “
A Mathematical Representation of the Multiaxial Baushinguer Effect
,” CEGB Report No. RD/B/N 731.
22.
Lemaître
,
J.
, and
Chaboche
,
J. L.
, 1990,
Mechanics of Solid Materials
,
Cambridge University Press
,
Cambridge, England
.
23.
Marquis
,
D.
, 1979, “
Modélisation et identification de l’écrouissage anisotrope des métaux
,” Master thesis, Université Pierre et Marie Curie, Paris.
24.
Hill
,
R.
, 1950,
The Mathematical Theory of Plasticity
,
Oxford Sciences
,
New York
.
25.
Prager
,
W.
, and
Hodge
,
P. G.
, 1951,
Theory of Perfectly Plastic Solids
,
Wiley
,
New York
, pp.
115
118
.
26.
Jiang
,
G. L.
, 1995, “
Nonlinear Finite Element Formulation of Kinematic Limit Analysis
,”
Int. J. Numer. Methods Eng.
0029-5981,
38
, pp.
2775
2807
.
27.
Flores
,
P.
,
Duchene
,
L.
,
Bouffioux
,
C.
,
Lelotte
,
T.
,
Henrard
,
C.
,
Pernin
,
N.
,
Van Bael
,
A.
,
He
,
S.
,
Duflou
,
J.
, and
Habraken
,
A. M.
, 2007, “
Model Identification and FE Simulations: Effect of Different Yield Loci and Hardening Laws in Sheet Forming
,”
Int. J. Plast.
0749-6419,
23
, pp.
420
449
.
28.
Bouvier
,
S.
,
Teodosiu
,
C.
,
Maier
,
C.
,
Banu
,
M.
, and
Tabacaru
,
V.
, 2001, “
Selection and Identification of Elastoplastic Models for the Materials Used in the Benchmarks, WP3, Task 1, 18-Months Progress Report of the Digital Die Design Systems (3DS)
,” IMS 1999 000051.
29.
Oliveira
,
M. C.
,
Alves
,
J. L.
,
Chaparro
,
B. M.
, and
Menzes
,
L. F.
, 2007, “
Study on the Influence of Work-Hardening Modeling in Springback Prediction
,”
Int. J. Plast.
0749-6419,
23
, pp.
516
543
.
30.
Li
,
B.
,
Metzger
,
D. R.
, and
Nye
,
T. J.
, 2006, “
Reliability Analysis of the Tube Hydroforming Process Based on Forming Limit Diagram
,”
ASME J. Pressure Vessel Technol.
0094-9930,
128
, pp.
402
407
.
You do not currently have access to this content.