The inelastic deformation behavior of PMR-15 neat resin, a high-temperature thermoset polymer, was investigated at 316°C. The experimental program was designed to explore the influence of strain rate on tensile loading, unloading, and strain recovery behaviors. In addition, the effect of the prior strain rate on the relaxation response of the material, as well as on the creep behavior following strain-controlled loading were examined. Positive, nonlinear strain rate sensitivity is observed in monotonic loading. The material exhibits nonlinear, “curved” stress-strain behavior during unloading at all strain rates. The recovery of strain at zero stress is strongly influenced by the prior strain rate. The prior strain rate also has a profound effect on relaxation behavior. Likewise, creep response is significantly influenced by the prior strain rate. The experimental data are modeled with the viscoplasticity theory based on overstress (VBO). The comparison with experimental data demonstrates that the VBO successfully predicts the inelastic deformation behavior of the PMR-15 polymer under various test histories at 316°C.

1.
NASA/Glenn Research Center
, 2005, “
DMBZ Polyimides Provide an Alternative to PMR-15 for High-Temperature Applications
.”
2.
Ellyin
,
F.
, and
Xia
,
Z.
, 2006, “
Nonlinear Viscoelastic Constitutive Model for Thermoset Polymers
,”
ASME J. Eng. Mater. Technol.
0094-4289,
128
, pp.
579
585
.
3.
Shaw
,
S.
,
Warby
,
M. K.
, and
Whiteman
,
J. R.
, 1997,
An Introduction to the Theory and Numerical Analysis of Viscoelasticity Problems
,
Brunel University
,
England
.
4.
Schapery
,
R. A.
, 2000, “
Nonlinear Viscoelastic Solids
,”
Int. J. Solids Struct.
0020-7683,
37
, pp.
359
366
.
5.
Losi
,
G. U.
, and
Knauss
,
W. G.
, 1992, “
Free Volume Theory and Nonlinear Thermoviscoelasticity
,”
Polym. Eng. Sci.
0032-3888,
32
(
8
), pp.
542
557
.
6.
Knauss
,
W. G.
, and
Emri
,
I.
, 1987, “
Volume Change and the Nonlinearly Thermo-Viscoelastic Constitution of Polymers
,”
Polym. Eng. Sci.
0032-3888,
27
(
1
), pp.
86
100
.
7.
Shay
,
R. M.
, and
Caruthers
,
J. M.
, 1990, “
A Predictive Model for the Effects of Thermal History on the Mechanical Behavior of Amorphous Polymers
,”
Polym. Eng. Sci.
0032-3888,
30
(
20
), pp.
1266
1280
.
8.
Schapery
,
R. A.
, 1969, “
On the Characterization of Non-Linear Viscoelastic Materials
,”
Polym. Eng. Sci.
0032-3888,
9
(
4
), pp.
295
310
.
9.
O’Connell
,
A.
, and
McKenna
,
G. B.
, 2002, “
The Non-Linear Viscoelastic Response of Polycarbonate in Torsion: An Investigation of Time-Temperature and Time-Strain Superposition
,”
Mech. Time-Depend. Mater.
1385-2000,
6
(
3
), pp.
207
229
.
10.
Williams
,
M. L.
,
Landel
,
R. F.
, and
Ferry
,
J. D.
, 1955, “
The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-Forming Liquids
,”
J. Am. Chem. Soc.
0002-7863,
77
, pp.
3701
3707
.
11.
Xia
,
Z.
,
Shen
,
X.
, and
Ellyin
,
F.
, 2005, “
An Assessment of Nonlinearly Viscoelastic Constitutive Models for Cyclic Loading: The Effect of a General Loading/Unloading Rule
,”
Mech. Time-Depend. Mater.
1385-2000,
9
(
4
), pp.
79
98
.
12.
Popelar
,
C. F.
, and
Liechti
,
K. M.
, 2003, “
A Distortion-Modified Free Volume Theory for Nonlinear Viscoelastic Behavior
,”
Mech. Time-Depend. Mater.
1385-2000,
7
, pp.
89
141
.
13.
Lustig
,
S. R.
,
Shay
,
R. M.
, and
Caruthers
,
J. M.
, 1996, “
Thermodynamic Constitutive Equation for Materials With Memory on a Material Time Scale
,”
J. Rheol.
0148-6055,
40
, pp.
69
106
.
14.
Krempl
,
E.
, and
Khan
,
F.
, 2003, “
Rate (Time)-Dependent Deformation Behavior: An Overview of Some Properties of Metals and Solid Polymers
,”
Int. J. Plast.
0749-6419,
19
, pp.
1069
1095
.
15.
Krempl
,
E.
,
McMahon
,
J.
, and
Yao
,
D.
, 1986, “
Viscoplasticity Based on Overstress With a Differential Growth Law for the Equilibrium Stress
,”
Mech. Mater.
0167-6636,
5
, pp.
35
48
.
16.
Krempl
,
E.
, 1996, “
A Small Strain Viscoplasticity Theory Based on Overstress
,”
Unified Constitutive Laws of Plastic Deformation
,
A.
Krausz
and
K.
Krausz
, eds.,
Academic
,
San Diego
, pp.
281
318
.
17.
Krempl
,
E.
, and
Ho
,
K.
, 2001, “
Inelastic Compressible and Incompressible, Isotropic Small Strain Viscoplasticity Theory Based on Overstress (VBO)
,”
Handbook of Materials Behavior Models
,
J.
Lemaitre
, ed.,
Academic
,
San Diego
, pp.
336
348
.
18.
Krempl
,
E.
, 1995, “
From the Standard Linear Solid to the Viscoplasticity Theory Based on Overstress
,”
Computational Mechanics ‘95 Theory and Applications
,
S.
Atluri
,
G.
Yagawa
, and
T.
Cruse
, eds.,
Springer
,
New York
, pp.
1679
1684
.
19.
Kitagawa
,
M.
, and
Matsutani
,
T.
, 1988, “
Effect of Time and Temperature on Nonlinear Constitutive Equation in Polypropylene
,”
J. Mater. Sci.
0022-2461,
23
(
11
), pp.
4085
4090
.
20.
Kitagawa
,
M.
,
Zhou
,
D.
, and
Qiu
,
J.
, 1995, “
Stress-Strain Curves for Solid Polymers
,”
Polym. Eng. Sci.
0032-3888,
35
(
22
), pp.
1725
1732
.
21.
Bordonaro
,
C. M.
, and
Krempl
,
E.
, 1992, “
Effects of Strain Rate on the Deformation and Relaxation Behavior of 6/6 Nylon at Room Temperature
,”
Polym. Eng. Sci.
0032-3888,
32
(
16
), pp.
1066
1072
.
22.
Krempl
,
E.
, and
Ho
,
K.
, 2000, “
An Overstress Model for Solid Polymer Deformation Behavior Applied to Nylon 66
,”
Time Dependent and Nonlinear Effects in Polymers and Composites, ASTM STP 1357
,
R.
Schapery
and
C.
Sun
, eds.,
American Society for Testing and Materials
,
Philadelphia
, pp.
118
137
.
23.
Khan
,
F. J.
, and
Krempl
,
E.
, 2004, “
Pre-Necking and Post-Necking Relaxation and Creep Behavior of Polycarbonate: A Phenomenological Study
,”
Polym. Eng. Sci.
0032-3888,
44
(
9
), pp.
1783
1791
.
24.
Khan
,
F. J.
, and
Krempl
,
E.
, 2006, “
Amorphous and Semicrystalline Solid Polymers: Experimental and Modeling Studies of Their Inelastic Deformation Behaviors
,”
ASME J. Eng. Mater. Technol.
0094-4289,
128
, pp.
64
72
.
25.
Khan
,
F.
, 2006, “
Loading History Effects on the Creep and Relaxation Behavior of Thermoplastics
,”
ASME J. Eng. Mater. Technol.
0094-4289,
128
, pp.
564
571
.
26.
Khan
,
F. J.
, 2003, “
The Deformation Behavior of Solid Polymers and Modeling With the Viscoplasticity Theory Based on Overstress
,” Ph.D. thesis, Rensselaer Polytechnic Institute, Troy, NY.
27.
Colak
,
O. U.
, 2005, “
Modeling Deformation Behavior of Polymers With Viscoplasticity Theory Based on Overstress
,”
Int. J. Plast.
0749-6419,
21
, pp.
145
160
.
28.
Colak
,
O. U.
, and
Dusunceli
,
N.
, 2006, “
Modeling Viscoelastic and Viscoplastic Behavior of High Density Polyethylene (HDPE)
,”
ASME J. Eng. Mater. Technol.
0094-4289,
128
, pp.
572
578
.
29.
Bowles
,
K. J.
,
Papadopoulos
,
D. S.
,
Ingrahm
,
L. L.
,
McCorkle
,
L. S.
, and
Klan
,
O. V.
, 2001, “
Longtime Durability of PMR-15 Matrix Polymer at 204, 260, 288, and 316°C
,” NASA/Glenn Research Center Technical Paper No. TM-2001-210602.
30.
Odegard
,
G.
, and
Kumosa
,
M.
, 2000, “
Elastic-Plastic and Failure Properties of a Unidirectional Carbon/PMR-15 Composite at Room and Elevated Temperatures
,”
Compos. Sci. Technol.
0266-3538,
60
, pp.
2979
2988
.
31.
Ruggles-Wrenn
,
M. B.
, and
Broeckert
,
J.
, 2008, “
Effects of Prior Aging at 288°C in Air and in Argon Environments on Creep Response of PMR-15 Neat Resin
,”
J. Appl. Polym. Sci.
0021-8995,
107
, pp.
1378
1386
.
32.
Marais
,
C.
, and
Villoutreix
,
G.
, 1998, “
Analysis and Modeling of the Creep Behavior of the Thermostable PMR-15 Polyimide
,”
J. Appl. Polym. Sci.
0021-8995,
69
, pp.
1983
1991
.
33.
Bowles
,
K. J.
,
Layne
,
D.
, and
Leonhardt
,
T. A.
, 1992, “
Isothermal Aging Effects on PMR-15 Resin
,” NASA/Glenn Research Center Technical Paper No. 105648.
34.
Tsuji
,
L. C.
,
McManus
,
H. L.
, and
Bowles
,
K. J.
, 1998, “
Mechanical Properties of Degraded PMR-15 Resin
,” NASA/Glenn Research Center Technical Paper No. TM-1998-208487.
35.
Bowles
,
K. J.
,
Tsuji
,
L. C.
,
Kamvouris
,
J. E.
, and
Roberts
,
G. D.
, 2003, “
Long-Term Isothermal Aging Effects on Weight Loss, Compression Properties, and Dimensions of T650–35 Fabric-Reinforced PMR-15 Composites—Data
,” NASA/Glenn Research Center Technical Paper No. TM-2003-211870.
36.
Schoeppner
,
G. A.
,
Tandon
,
G. P.
, and
Ripberger
,
E. R.
, 2007, “
Anisotropic Oxidation and Weight Loss in PMR-15 Composites
,”
Composites, Part A
1359-835X,
38
, pp.
890
904
.
37.
McClung
,
A.
, and
Ruggles-Wrenn
,
M. B.
, 2008, “
The Rate (Time)-Dependent Mechanical Behavior of the PMR-15 Thermoset Polymer at Elevated Temperature
,”
Polym. Test.
0142-9418,
27
, pp.
908
914
.
38.
Falcone
,
C. M.
, and
Ruggles-Wrenn
,
M. B.
, 2009, “
Rate Dependence and Short-Term Creep Behavior of a Thermoset Polymer at Elevated Temperature
,”
ASME J. Pressure Vessel Technol.
0094-9930,
131
(
1
), p.
011403
.
39.
McClung
,
A.
, and
Ruggles-Wrenn
,
M. B.
, 2009, “
Strain Rate Dependence and Short-Term Relaxation Behavior of a Thermoset Polymer at Elevated Temperature: Experiment and Modeling
,
ASME J. Pressure Vessel Technol.
0094-9930,
131
, p.
031405
.
40.
Ruggles
,
M.
,
Cheng
,
S.
, and
Krempl
,
E.
, 1994, “
The Rate-Dependent Mechanical Behavior of Modified 9 wt. % Cr-1 wt. % Mo Steel at 538°C
,”
Mater. Sci. Eng., A
0921-5093,
186
(
1–2
), pp.
15
21
.
41.
Ruggles
,
M.
, and
Krempl
,
E.
, 1991, “
Rate-Sensitivity and Short Term Relaxation Behavior of AISI Type 304 Stainless Steel at Room Temperature and at 650°C; Influence of Prior Aging
,”
ASME J. Pressure Vessel Technol.
0094-9930,
113
(
3
), pp.
385
391
.
You do not currently have access to this content.