Nonlinear buckling and postbuckling behavior for a 3D braided composite cylindrical shell of finite length subjected to lateral pressure, hydrostatic pressure, or external liquid pressure in thermal environments have been presented in this paper. Based on a new micromacromechanical model, a 3D braided composite may be treated as a cell system and the geometry of each cell is deeply dependent on its position in the cross section of the cylindrical shell. The material properties of the epoxy are expressed as a linear function of temperature. The governing equations are based on Reddy’s higher order shear deformation shell theory with a von Kármán–Donnell type of kinematic nonlinearity and including thermal effects. A singular perturbation technique is employed to determine the buckling pressure and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling behavior of perfect and imperfect braided composite cylindrical shells with different values of geometric parameter and of fiber volume fraction in different cases of thermal environmental conditions. The results show that the shell has lower buckling pressures and postbuckling paths when the temperature-dependent properties are taken into account. The results reveal that the temperature changes, the fiber volume fraction, and the shell geometric parameter have a significant effect on the buckling pressure and postbuckling behavior of braided composite cylindrical shells.

1.
Wang
,
X.
, and
Dai
,
H. L.
, 2003, “
Thermal Buckling for Local Delamination Near the Surface of Laminated Cylindrical Shells and Delaminated Growth
,”
J. Therm. Stresses
0149-5739,
26
, pp.
423
442
.
2.
Wang
,
X.
,
Lu
,
G.
, and
Xiao
,
D. G.
, 2002, “
Non-Linear Thermal Buckling for Local Delamination Near the Surface of Laminated Cylindrical Shell
,”
Int. J. Mech. Sci.
0020-7403,
44
, pp.
947
965
.
3.
Ishikawa
,
T.
, and
Chou
,
T. W.
, 1982, “
Elastic Behavior of Woven Hybrid Composites
,”
J. Compos. Mater.
0021-9983,
16
, pp.
2
19
.
4.
Naik
,
R. A.
, 1995, “
Failure Analysis of Woven and Braided Fabric Reinforced Composites
,”
J. Compos. Mater.
0021-9983,
29
, pp.
2334
2363
.
5.
Wang
,
Y. Q.
, and
Wang
,
A. S. D.
, 1997, “
Spatial Distribution of Yarns and Mechanical Properties in 3D Braided Tubular Composites
,”
Appl. Compos. Mater.
0929-189X,
4
, pp.
121
132
.
6.
Kwon
,
Y. W.
, and
Cho
,
W. M.
, 2004, “
Multilevel, Micromechanical Model for Thermal Analysis of Woven-Fabric Composite Materials
,”
J. Therm. Stresses
0149-5739,
27
, pp.
59
73
.
7.
Eslami
,
M. R.
, and
Shariyat
,
M.
, 1997, “
Elastic, Plastic, and Creep Buckling of Imperfect Cylinders Under Mechanical and Thermal Loading
,”
ASME J. Pressure Vessel Technol.
0094-9930,
119
, pp.
27
36
.
8.
Whitcomb
,
J. D.
, and
Woo
,
K.
, 1994, “
Enhanced Direct Stiffness Method for Finite Element Analysis of Textile Composites
,”
Compos. Struct.
0263-8223,
28
, pp.
385
390
.
9.
Whitcomb
,
J. D.
, and
Sriengan
,
K.
, 1996, “
Effect of Various Approximations on Predicted Progressive Failure on Plain Weave Composites
,”
Compos. Struct.
0263-8223,
34
, pp.
13
20
.
10.
Rosenow
,
M. W. K.
, 1984, “
Wind Angle Effects in Glass Fibre Reinforced Polyester Filament Wound Pipes
,”
Composites
0010-4361,
15
, pp.
144
152
.
11.
Hur
,
S. H.
,
Son
,
H. J.
,
Kweon
,
J. H.
, and
Choi
,
J. H.
, 2008, “
Postbuckling of Composite Cylinders Under External Hydrostatic Pressure
,”
Compos. Struct.
0263-8223,
86
, pp.
114
124
.
12.
Olivas
,
J. D.
,
Ravi-Chandar
,
K.
,
Bustillos
,
J.
, and
Craigie
,
L.
, 1996, “
Buckling of Filament-Wound Cylindrical Vessels Subjected to External Pressure
,”
ASME J. Pressure Vessel Technol.
0094-9930,
118
, pp.
216
220
.
13.
Messager
,
T.
,
Pyrz
,
M.
,
Gineste
,
B.
, and
Chauchot
,
P.
, 2002, “
Optimal Laminations of Thin Underwater Composite Cylindrical Vessels
,”
Compos. Struct.
0263-8223,
58
, pp.
529
537
.
14.
Yousefpour
,
A.
, and
Ghasemi Nejhad
,
M. N.
, 2004, “
Design, Analysis, Manufacture, and Test of APC-2/AS4 Thermoplastic Composite Pressure Vessels for Deep Water Marine Applications
,”
J. Compos. Mater.
0021-9983,
38
, pp.
1701
1732
.
15.
Zeng
,
T.
, and
Wu
,
L. Z.
, 2003, “
Post-Buckling Analysis of Stiffened Braided Cylindrical Shells Under Combined External Pressure and Axial Compression
,”
Compos. Struct.
0263-8223,
60
, pp.
455
466
.
16.
Shen
,
H. S.
, and
Chen
,
T. Y.
, 1988, “
A Boundary Layer Theory for the Buckling of Thin Cylindrical Shells Under External Pressure
,”
Appl. Math. Mech.
0253-4827,
9
, pp.
557
571
.
17.
Reddy
,
J. N.
, and
Liu
,
C. F.
, 1985, “
A Higher-Order Shear Deformation Theory of Laminated Elastic Shells
,”
Int. J. Eng. Sci.
0020-7225,
23
, pp.
319
330
.
18.
Shen
,
H. S.
, 2001, “
The Effects of Hygrothermal Conditions on the Postbuckling Analysis of Shear Deformable Laminated Cylindrical Shells
,”
Int. J. Solids Struct.
0020-7683,
38
, pp.
6357
6380
.
19.
Schapery
,
R. A.
, 1968, “
Thermal Expansion Coefficients of Composite Materials Based on Energy Principles
,”
J. Compos. Mater.
0021-9983,
2
, pp.
380
404
.
20.
Batdorf
,
S. B.
, 1947, “
A Simplified Method of Elastic-Stability Analysis for Thin Cylindrical Shells
,” NACA Technical Report No. 874.
21.
Adams
,
D. F.
, and
Crane
,
D. A.
, 1984, “
Combined Loading Micromechanical Analysis of a Unidirectional Composite
,”
Composites
0010-4361,
15
, pp.
181
192
.
22.
Islam
,
M. R.
,
Sjoind
,
S. G.
, and
Paramil
,
A.
, 2001, “
Finite Element Analysis of Linear Thermal Expansion Coefficients of Unidirectional Cracked Composites
,”
J. Compos. Mater.
0021-9983,
35
, pp.
1762
1776
.
You do not currently have access to this content.