In this paper the shakedown limit load is determined for a long radius 90-deg pipe bend using two different techniques. The first technique is a simplified technique which utilizes small displacement formulation and elastic–perfectly plastic material model. The second technique is an iterative based technique which uses the same elastic–perfectly plastic material model, but incorporates large displacement effects accounting for geometric nonlinearity. Both techniques use the finite element method for analysis. The pipe bend is subjected to constant internal pressure magnitudes and cyclic bending moments. The cyclic bending loading includes three different loading patterns, namely, in-plane closing, in-plane opening, and out-of-plane bending. The simplified technique determines the shakedown limit load (moment) without the need to perform full cyclic loading simulations or conventional iterative elastic techniques. Instead, the shakedown limit moment is determined by performing two analyses, namely, an elastic analysis and an elastic–plastic analysis. By extracting the results of the two analyses, the shakedown limit moment is determined through the calculation of the residual stresses developed in the pipe bend. The iterative large displacement technique determines the shakedown limit moment in an iterative manner by performing a series of full elastic–plastic cyclic loading simulations. The shakedown limit moment output by the simplified technique (small displacement) is used by the iterative large displacement technique as an initial iterative value. The iterations proceed until an applied moment guarantees a structure developed residual stress, at load removal, equal to or slightly less than the material yield strength. The shakedown limit moments output by both techniques are used to generate shakedown diagrams of the pipe bend for a spectrum of constant internal pressure magnitudes for the three loading patterns stated earlier. The maximum moment carrying capacity (limit moment) the pipe bend can withstand and the elastic limit are also determined and imposed on the shakedown diagram of the pipe bend. Comparison between the shakedown diagrams generated by the two techniques, for the three loading patterns, is presented.

1.
Bantlin
,
A.
, 1910, “
Formänderung und Beanspruchung federnder Ausgleichröhre
,” Zeitshrift des Vereines Deutscher Ingenieure, 54, pp. 43–49.
2.
von Kàrmàn, Th., 1911, “
Über die Formänderung Dünnwandiger Röhre, Insbesondere Federnder Ausgleichröhre
,” Zeitshrift des Vereines Deutscher Ingenieure, 55, pp. 1889–1895.
3.
Melan
,
E.
, 1938, “
Der Spannungszustand eines Mises-Henckyschen Kontinuums bei veraenderlicher Belastung
,”
Sitzungsber. Akad. Wiss. Wien, Math.-Naturwiss. Kl., Abt. 2A
0376-2629,
147
, pp.
73
78
.
4.
Melan
,
E.
, 1938, “
Zur Plastizität des Räumlichen Kontinuums
,”
Ing.-Arch.
0020-1154,
8
, pp.
116
126
.
5.
Karamanos
,
S. A.
,
Tsouvalas
,
D.
, and
Gresnigt
,
A. M.
, 2004, “
Ultimate Capacity of Pressurized 90 Deg Elbows Under Bending
,” ASME PVP transactions, 477, pp. 139–148.
6.
Shalaby
,
M. A.
, and
Younan
,
M. Y. A.
, 1998, “
Limit Loads for Pipe Elbows with Internal Pressure Under In-plane Closing Bending Moments
,”
ASME J. Pressure Vessel Technol.
0094-9930,
120
, pp.
35
42
.
7.
Mourad
,
H. M.
, and
Younan
,
M. Y. A.
, 2002, “
Limit-Load Analysis of Pipe Bends Under Out-of-Plane Moment Loading and Internal Pressure
,”
ASME J. Pressure Vessel Technol.
0094-9930,
124
, pp.
32
37
.
8.
ASME
, 2004, “
Boiler and Pressure Vessel Code
,” NG-3000, Section III Division I.
9.
Marriott
,
D. L.
, 1988, “
Evaluation of Deformation or Load Control of Stress under Inelastic Conditions Using Finite Elements Stress Analysis
,”
Proceedings ASME-PVP Conference
, 136, pp.
3
9
.
10.
Dhalla
,
A. K.
, 1987, “
A Simplified Procedure to Classify Stresses for Elevated Temperature Service
,” ASME-PVP transactions, 120, pp. 177–188.
11.
Seshadri
,
R.
, 1991, “
The Generalized Local Stress Strain (GLOSS) Analysis-Theory and Applications
,”
ASME J. Pressure Vessel Technol.
0094-9930,
113
, pp.
219
227
.
12.
Mackenzie
,
D.
, and
Boyle
,
J. T.
, 1993, “
A Simple Method for Estimating Shakedown Load for Complex Structures
,”
ASME J. Pressure Vessel Technol.
0094-9930,
265
, pp.
89
94
.
13.
Leckie
,
F. A.
, and
Penny
,
R. K.
, 1967, “
Shakedown Pressure for Radial Nozzles in Spherical Pressure Vessels
,”
Int. J. Solids Struct.
0020-7683,
3
, pp.
743
755
.
14.
Muscat
,
M.
, and
Mackenzie
,
D.
, 2003, “
Elastic-Shakedown Analysis of Axisymmetric Nozzles
,”
ASME J. Pressure Vessel Technol.
0094-9930,
125
, pp.
365
370
.
15.
Abdalla
,
H. F.
,
Younan
,
M. Y. A.
, and
Megahed
,
M. M.
, 2005, “
A Simplified Technique for Shakedown Load Determination
,”
Proceedings 18th International Conference on Structural Mechanics in Reactor Technology
,
Beijing
, pp.
1315
1328
.
16.
Megahed
,
M. M.
, 1981, “
Influence of Hardening Rule on the Elasto-Plastic Behaviour of a Simple Structure under Cyclic Loading
,”
Int. J. Mech. Sci.
0020-7403,
23
, pp.
169
182
.
17.
Bree
,
J.
, 1967, “
Elastic-Plastic Behaviour of Thin Tubes Subjected to Internal Pressure and Intermittent High Heat Fluxes with Application to Fast Nuclear Reactor Fuel Elements
,”
J. Strain Anal.
0022-4758,
2
, pp.
226
238
.
18.
Abdalla
,
H. F.
,
Younan
,
M. Y. A.
, and
Megahed
,
M. M.
, 2005, “
A Simplified Technique for Shakedown Load Determination of a 90 Degree Pipe Bend Subjected to Constant Internal Pressure and Cyclic In-Plane Bending
,”
ASME Transactions, Proceedings PVP Division Conference
,
Denver, Colorado
, July.
19.
Hibbitt, Karlsson and Sorensen, Inc.
, 2005,
ABAQUS/Standard User’s Manual
, Providence, R. I.
20.
Sobel
,
L. H.
, and
Newman
,
S. Z.
, 1980, “
Comparison of Experimental and Simplified Analytical Results for the In-Plane Plastic Bending and Buckling of an Elbow
,”
ASME J. Pressure Vessel Technol.
0094-9930,
102
, pp.
400
409
.
You do not currently have access to this content.