The goal of the paper is to provide an estimation of the vibrations of a water pipe subjected to standard turbulent excitations. Firstly, a simplified expression of the acoustic pressure generated by a standard valve or orifice is proposed. It is based on the hydraulic pressure drop and a Strouhal number. Secondly, a theoretical analysis of fluid-structure interaction yields a screening expression of the structure velocity power spectral density (PSD), as a function of the acoustic pressure source. Field data are used for validation. It is shown that cavitation-induced vibration can be directly identified by plotting the structure velocity PSD in dimensionless form.

1.
Hambric
,
S. A.
,
Hwang
,
Y. F.
, and
Chyczewski
,
T. S.
, 2002, “
Noise Sources and Transmission in Piping Systems
,”
Proc. of ASME International Mechanical Engineering Congress & Exposition
,
New Orleans
, Paper #32682.
2.
Janzen
,
V. P.
, and
Smith
,
B.
, 2004, “
Acoustic Properties of High Energy Orifice Assemblies
,”
Proc. of the 8th Int. Conf. on Flow Induced Vibration
,
de Langre & Axisa
,
Paris
, Vol.
1
, pp.
361
366
.
3.
Moussou
,
P.
,
Lafon
,
P.
,
Potapov
,
S.
,
Paulhiac
,
L.
, and
Tijsseling
,
A.
, 2004, “
Industrial Cases of FSI Due to Internal Flows
,” in
Proc. of the 9th Int. Conf. on Pressure Surges
,
BHR Group
,
Cranfield, U.K.
, Vol.
1
, pp.
13
31
.
4.
Gibert
,
R. J.
, 1988,
Vibrations des structures—Interactions avec les fluides—Sources d’excitation aléatoires
,
Eyrolles
,
Paris
.
5.
Au-Yang
,
M. K.
, 2001,
Flow-Induced Vibration of Power and Process Plant Components: A Practical Workbook
,
ASME Press
,
New York
.
6.
Blevins
,
R. D.
, 1990,
Flow-Induced Vibrations
,
Krieger/Van Nostrand
,
New York
.
7.
To
,
C. W. S.
, 1984, “
The Acoustic Simulation and Analysis of Complicated Reciprocating Compressor Piping Systems, I: Analysis Technique and Parameter Matrices of Acoustic Elements
,”
J. Sound Vib.
0022-460X,
96
(
2
), pp.
175
194
.
8.
Axisa
,
F.
, 2001,
Modélisation des systèmes mécaniques, Tome 4: Vibrations sous écoulement
(in French),
Hermès
,
Paris
.
9.
Gibert
,
R. J.
, personal communication.
10.
Weaver
,
D.
,
Ziada
,
S.
,
Au-Yang
,
M. K.
,
Chen
,
S. S.
,
Païdoussis
,
M.
, and
Pettigrew
,
M.
, 2000, “
Flow Induced Vibrations in Power and Process Plant Components—Progress and Prospects
,”
ASME J. Pressure Vessel Technol.
0094-9930,
122
,
339
.
11.
Tullis
,
J. P.
, 1989, “
Hydraulics of pipelines—pumps, valves, cavitation, transients
,”
Wiley and Sons
,
New York
.
12.
Brennen
,
C. E. B.
, 1995, “
Cavitation and Bubble Dynamics
,”
Oxford University Press
.
13.
Franklin
,
R. E.
, and
McMillan
,
J.
, 1984, “
Noise Generation in Cavitating Flow, the Submerged Jet
,”
J. Fluids Eng.
0098-2202,
106
, pp.
336
341
.
14.
Blake
,
W. K.
, 1986,
Mechanics of Flow-Induced Sound and Vibration
,
Academic Press
,
Orlando
.
15.
Tijsseling
,
A.
, 1996, “
Fluid-Structure Interaction in Liquid-Filled Pipe Systems: A Review
,”
J. Fluids Struct.
0889-9746,
10
, pp.
109
146
.
16.
Moussou
,
P.
, 2005, “
A Kinematic Method for the Computation of the Natural Modes of Fluid-Structure Interaction Systems
,”
J. Fluids Struct.
0889-9746,
20
(
5
), pp.
643
658
.
17.
Meirovitch
,
L.
, 1967,
Analytical Methods in Vibrations
,
The MacMillan Comp
,
London
.
18.
Holland
,
K. R.
, and
Davies
,
P. O. A. L.
, 2000, “
The Measurement of Sound Power Flux in Flow Ducts
,”
J. Sound Vib.
0022-460X,
230
(
4
), pp.
915
932
.
You do not currently have access to this content.