The thermodynamic effect on cryogenic cavitating flow characteristics of pressurized liquid nitrogen in a horizontal rectangular nozzle is precisely investigated by numerical analysis based on an unsteady thermal nonequilibrium two-fluid model and by flow visualization measurement. According to the numerical and experimental study, the sufficiently useful results are proposed to realize the further development and high performance of a type of cryogenic two-phase cooling system. It is numerically and experimentally found that the inception of cryogenic cavitation occurs and the cavity grows in the vicinity of the wall surface of the inlet throat section. It is also found that the continuous process and behavior of cavitation inception, cloud cavity growth, and gas phase diffusion behavior with time in pressurized liquid nitrogen are dominated not only by several additional forces in the gas-phase momentum equation, but also by the thermodynamic effect that acts on the cavitation bubbles due to the inherent properties of cryogenic fluid. Especially under conditions of the same temperature and same aspect ratio of the cloud cavity, similar generating behavior of cavitation can be often found in the high Reynolds number region in spite of large cavitation number.

1.
Filina
,
N. N.
, and
Weisend
,
J. G.
, 1996,
Cryogenic Two-Phase Flow
,
Cambridge University Press
, New York.
2.
Barron
,
R. F.
, 1999,
Cryogenic Heat Transfer
,
Taylor & Francis
, Philadelphia, Pa.
3.
Barron
,
R. F.
, 1985,
Cryogenic Systems
, 2nd ed.,
Oxford University Press
, New York.
4.
Kamijo
,
K.
,
Yoshida
,
M.
, and
Tsujimoto
,
Y.
, 1982, “
Hydraulic and Mechanical Performance of Le-7 Lox Pump Inducer
,” AIAA
J. Propul. Power
0748-4658,
9
(
6
), pp.
819
-
826
.
5.
Ishimoto
,
J.
,
Oike
,
M.
, and
Kamijo
,
K.
, 2000, “
Two-Dimensional Numerical Simulation of Boiling Two-Phase Flow of Liquid Nitrogen
,”
Trans. Jpn. Soc. Aeronaut. Space Sci.
0549-3811,
43
(
141
), pp.
114
-
121
.
6.
Ishimoto
,
J.
,
Oike
,
M.
, and
Kamijo
,
K.
, 2001, “
Numerical Analysis of Two-Phase Pipe Flow of Liquid Helium Using Multi-Fluid Model
,”
ASME Trans. J. Fluids Eng.
0098-2202,
123
, pp.
811
-
818
.
7.
Oike
,
M.
,
Tokumasu
,
T.
, and
Kamijo
,
K.
, 2001, “
Observation of Helium Two-Phase Flow in a Pipe
,”
Proceedings of the Fourth International Symposium on Cavitation
,
C. E.
Brennen
, ed. Pasadena, CA, USA (in CD-ROM).
8.
Deshpande
,
M.
,
Feng
,
J.
, and
Merkle
,
C. L.
, 1997, “
Numerical Modeling of the Thermodynamic Effects Of Cavitation
,”
ASME Trans. J. Fluids Eng.
0098-2202,
119
, pp.
420
-
427
.
9.
Tagaya
,
Y.
,
Kato
,
H.
,
Yamaguchi
,
H.
, and
Maeda
,
M.
, 1999, “
Thermodynamic Effect on a Sheet Cavitation
,”
Proc. ASME 1999 Fluids Engineering Division Summer Meeting, FEDSM99-6772
, San Francisco, CA, USA, (in CD-ROM).
10.
Kataoka
,
I.
, and
Serizawa
,
A.
, 1989, “
Basic Equations of Turbulence in Gas-Liquid Two-Phase Flow
,”
Int. J. Multiphase Flow
0301-9322,
15
, pp.
843
-
855
.
11.
Harlow
,
F. H.
, and
Amsden
,
A. A.
, 1975, “
Numerical Calculation of Multiphase Fluid Flow
,”
J. Comput. Phys.
0021-9991,
17
, pp.
19
-
52
.
12.
Yamamoto
,
S.
,
Hagari
,
H.
, and
Murayama
,
M.
, 1997, “
Numerical Simulation of Condensation Around the 3-D Wing
,”
Trans. Jpn. Soc. Aeronaut. Space Sci.
0549-3811,
138
, pp.
182
-
189
.
13.
Young
,
J. B.
, 1992, “
Two-Dimensional, Nonequilibrium, Wet-Stream Calculations for Nozzles and Turbine Cascades
”,
ASME J. Turbomach.
0889-504X,
114
, pp.
569
579
.
14.
Cross
,
M. M.
, 1975, “
Viscosity-Concentration-Shear Rate Relations for Suspensions
,”
Rheol. Acta
0035-4511,
14
, pp.
402
-
403
.
15.
Tomiyama
,
A.
,
Zun
,
I.
,
Higaki
,
H.
,
Makino
,
Y.
, and
Sakaguchi
,
T.
, 1997, “
A Three-Dimensional Particle Tracking Method for Bubbly Flow Simulation
,”
Nucl. Eng. Des.
0029-5493,
175
, pp.
77
-
86
.
16.
Tomiyama
,
A.
, and
Shimada
,
N.
, 2001, “
A Numerical Method for Bubbly Flow Simulation Based on a Multi-Fluid Model
,”
ASME J. Pressure Vessel Technol.
0094-9930,
123
, pp.
510
-
516
.
17.
Vaidyanathan
,
R.
,
Senocak
,
I.
,
Wu
,
J.
, and
Shyy
,
W.
, 2003, “
Sensitivity Evaluation of a Transport-Based Turbulent Cavitation Model
,”
ASME Trans. J. Fluids Eng.
0098-2202,
125
, pp.
447
-
458
.
18.
Delgosha
,
O. C.
,
Patella
,
R. F.
, and
Reboud
,
J. L.
, 2003, “
Evaluation of the Turbulence Model Influence on the Numerical Simulations of Unsteady Cavitation
,”
ASME Trans. J. Fluids Eng.
0098-2202,
125
, pp.
38
-
45
.
19.
Fan
,
L. S.
, and
Zhu
,
C.
, 1998,
Principles of Gas-Solid Flows
,
Cambridge University Press
, New York.
20.
Clift
,
R.
,
Grace
,
J. R.
, and
Weber
,
M. E.
, 1978,
Bubbles, Drops, and Particles.
Academic Press
, San Diego, CA.
21.
Dobran
,
F.
, 1988, “
Liquid and Gas-Phase Distributions in a Jet with Phase Change
,”
ASME Trans. J. Heat Transfer
0022-1481,
110
, pp.
955
-
960
.
22.
Solbrig
,
C. W.
,
McFadden
,
J. H.
,
Lyczkowski
,
R. W.
, and
Hughes
,
E. D.
, 1978, “
Heat Transfer and Friction Correlations Required to Describe Steam-Water Behavior in Nuclear Safety Studies
,”
AIChE Symp. Ser.
0065-8812,
174
, pp.
100
-
128
.
23.
Hirt
,
C. W.
, and
Romero
,
N. C.
, 1975, “Application of a Drift Flux Model to Flashing in Straight Pipes,” LA-6005-MS, Los Alamos Scientific Laboratory Report.
24.
Jacobsen
,
R. T.
,
Penoncello
,
S. G.
,
Lemmon
,
E. W.
, and
Penoncello
,
S. G.
, 1997,
Thermodynamic Properties of Cryogenic Fluids
,
Plenum Press
, New York.
25.
Moses
,
C. A.
, and
Stein
,
G. D.
, 1978, “
On the Growth of Steam Droplets Formed in Laval Nozzle Using Both Static Pressure and Light Scattering Measurements
,”
ASME Trans. J. Fluids Eng.
0098-2202,
100
, pp.
311
-
322
.
26.
Amsden
,
A. A.
, and
Harlow
,
F. H.
, 1970, “The SMAC Method: A Numerical Technique for Calculating Incompressible Fluid Flows,” LA-4370, Los Alamos Scientific Laboratory Report.
27.
Sato
,
K.
, and
Saito
,
Y.
, 2001, “
Unstable Cavitation Behavior in a Circular-Cylindrical Orifice Flow
,”
JSME Int. J., Ser. B
1340-8054,
45
(
3
), pp.
638
-
645
.
28.
Holman
,
J. P.
, 1994,
Experimental Methods for Engineers
,
McGraw-Hill
, New York.
You do not currently have access to this content.