In this paper, a fatigue model formulated in the framework of the continuum damage mechanics (CDM) is presented. The model is based on an explicit definition of fatigue damage and introduces a kinematic damage differential equation formulated directly as a function of the number of cycles and the stress cycle parameters. The model is initially presented for uniaxial problems, which facilitates the identification of its constants. An extension of the fatigue model to multiaxial problems is also proposed. This model was implemented in a nonlinear finite element code in conjunction with a constitutive model for cyclic plasticity. The cyclic plasticity model considered is based on a J2-plasticity theory with nonlinear isotropic and kinematic hardenings. In order to enhance the description of the cyclic elastoplastic behavior, the superposition of several nonlinear kinematic hardening variables is suggested. Both fatigue and plasticity models are identified for the P355NL1 (TStE355) steel. Finally, the numerical model is used to predict the fatigue crack initiation for a welded nozzle-to-plate connection, made of P355NL1 steel, and results are compared with experimental fatigue data.

1.
Suresh, S., 1998, Fatigue of Materials, 2nd ed., Cambridge University Press, Cambridge.
2.
Stephens, R. I., Fatemi, A., Stephens, R. R., and Fuchs, O. H., 2001, Metal Fatigue in Engineering, Wiley, New York.
3.
Kachanov
,
L. M.
,
1958
, “
Time of the Rupture Process Under Creep Conditions
,”
Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk, Metall. Topl.
,
8
, pp.
26
31
.
4.
Rabotnov, Y. N., 1969, Creep Problems in Structural Members, North-Holland, Amsterdam.
5.
Lemaitre
,
J.
, and
Chaboche
,
J.-L.
,
1978
, “
Aspect Phe´nome´nologique de la Rupture par Endommagement
,”
J. Me´ca. Applique´e
,
2
(
3
), pp.
318
365
.
6.
Lemaitre, J., and Chaboche, J.-L., 1990, Mechanics of Solid Materials, Cambridge University Press, Cambridge.
7.
Lemaitre, J., 1996, A Course on Damage Mechanics, 2nd ed., Springer-Verlag, New York.
8.
Lemaitre
,
J.
,
1986
, “
Local Approach of Fracture
,”
Eng. Fract. Mech.
,
25
(
5/6
), pp.
523
537
.
9.
Benallal
,
A.
,
Billardon
,
R.
, and
Lemaitre
,
J.
,
1991
, “
Continuum Damage Mechanics and Local Approach to Fracture: Numerical Procedures
,”
Comput. Methods Appl. Mech. Eng.
,
92
, pp.
141
155
.
10.
Chaboche
,
J.-L.
,
1977
, “
A Differential Law for Non-Linear Cumulative Fatigue Damage
,”
Ann. Inst. Tech. Bat. Trav. Publics
,
39, Supplement
No
351
, pp.
117
124
.
11.
Chaboche
,
J.-L.
, and
Lesne
,
P. M.
,
1988
, “
A Nonlinear Continuous Fatigue Damage Model
,”
Fatigue Fract. Eng. Mater. Struct.
,
11
(
1
), pp.
1
17
.
12.
EN 10028-5, 1996, “EN 10028-5, Produits Plats en Aciers pour Appareils a` Pression—Parte 5: Aciers Soudable a` Grains Fins, Lamine´ Thermome´caniquement,” Norme Europe´enne.
13.
Armstrong
,
P. J.
, and
Frederick
,
C. O.
,
1966
, “
A Mathematical Representation of the Multiaxial Bauschinger Effect
,”
G. E. G. B. Report
RD/B/N 731.
14.
Chaboche
,
J.-L.
,
1977
, “
Viscoplastic Constitutive Equations for the Description of Cyclic and Anisotropic Behavior of Metals
,”
Bull. Acad. Pol. Sci., Ser. Sci. Tech.
,
25
(
1
), pp.
33
42
.
15.
Chaboche
,
J.-L.
,
1986
, “
Time-Independent Constitutive Theories for Cyclic Plasticity
,”
Int. J. Plast.
,
2
(
2
), pp.
149
188
.
16.
Saracibar, C. A., Aleman, F., Cervera, M., and Chiumenti, M., 1998, “COMET—Coupled Mechanics and Thermal Analysis-Flow Chart,” version 1.0, Technical Report CIMNE No. IT-276, CIMNE, Barcelona, Spain.
17.
Doghri
,
I.
,
1993
, “
Fully Implicit Integration and Consistent Tangent Modulus in Elasto-Plasticity
,”
Int. J. Numer. Methods Eng.
,
36
, pp.
3915
3932
.
18.
Chiumenti, M., Agelet de Saracibar, C., and Cervera, M., 1998, “A Viscoplastic Model Including Non-Linear Isotropic and Kinematic Hardening,” Publication CIMNE No. 143.
19.
ASTM E606-92, 1998, “Standard Practice for Strain-Controlled Fatigue Testing,” in Annual Book of ASTM Standards, Part 10, American Society for Testing and Materials, West Conshohocken, PA, pp. 557–571.
20.
Dolan, T. J., Sines, G., and Waisman, J. L., 1959, Metal Fatigue, McGraw-Hill, New York.
21.
Juvinall, R. C., and Marshek, K. M., 1991, Fundamentals of Machine Components Design, 2nd ed., Wiley, New York.
22.
EN 13445, 2002, “Unfired Pressure Vessels, Part 3: Design, Clause 18: Detailed Assessment for Fatigue Life,” CEN.
23.
Miner
,
A.
,
1945
, “
Cumulative Damage in Fatigue
,”
ASME J. Appl. Mech.
,
107
, pp.
A159–A164
A159–A164
.
24.
Manson
,
S. S.
, and
Halford
,
G. R.
,
1981
, “
Practical Implementation of the Double Linear Damage Rule and Damage Curve Approach for Treating Cumulative Fatigue Damage
,”
Int. J. Fract.
,
17
, pp.
169
192
.
25.
De Jesus, A. M. P., Ribeiro, A. S., and Fernandes, A. A., 2003, “Modelling Studies of the Fatigue Behavior of a Nozzle-to-Vessel Intersection,” in Computer Technology and Applications, PVP-Vol. 458, ASME, New York, pp. 91–98.
You do not currently have access to this content.