Low-cycle fatigue tests corresponding to fatigue life range between 103 and 105 cycles were carried out at room temperature on one heat of 316 L austenitic stainless steel. These tests included: (i) reversed tension-compression, (ii) reversed tension-compression with a superimposed steady torque, (iii) pulsated tension-compression with a stress ratio (Rσ) such that −0.5<Rσ<0, (iv) reversed and pulsated tension-compression with a superimposed steady internal pressure. In tests (ii), the torsional ratcheting effect was measured. SEM observations were used to determine the number of cycles corresponding to Stage I crack initiation and the orientation of Stage I microcracks. It was observed that the in-depth growing Type B shear microcracks were most damaging. A simple criterion is proposed
where Ni is the number of cycles to crack initiation, Δγp B is the range of plastic shear strain on Type B planes, σnB is the maximum normal stress acting on these planes, No,α and β are parameters adjusted from the Manson-Coffin law and reversed cyclic stress-strain behavior.
This content is only available via PDF.
You do not currently have access to this content.