Abstract

The relevance of the paper is the need for the removal of a large number of unexploded ordnance (UXO) on the Norwegian continental shelf during the installation of subsea pipelines. This paper tries to include the seabed in the simulation by using the coupled Eulerian–Lagrangian (CEL) method. The effects of water, soil, and trinitrotoluene (TNT) are approached by using the Eulerian formulation with a specified equation of status (EOS). The Us − Up’s form of Mie–Gruneisen equation is used for the water and soil. The soil’s strength is described by the linear Drucker–Prager yielding function. The Jones–Wilkins–Lee (JWL) equation of state is used for TNT. The steel pipe is approached by shell elements in a Lagrangian scheme. The strain rate effects on steel strength and failure strain have been considered through the Cowper and Symonds equation. The coupling between Eulerian and Lagrangian formulation is done by the general contact features provided by the Abaqus explicit solver. Three offset distances (2.5 m, 5 m, and 15 m) have been simulated. The simulation results are discussed in detail with respect to the water, soil, TNT, and pipeline deformations, respectively. Additionally, the axial force is also discussed. It is shown that the present numerical model is able to capture the main characteristics of such a complicated physical process. The influence of the seabed has been shown explicitly in all the offset distances analyzed. The empirical factor method may give over-conservative results.

References

1.
Kwon
,
Y. W.
, and
Fox
,
P. K.
,
1993
, “
Underwater Shock Response of a Cylinder Subjected to a Side-On Explosion
,”
Comput. Struct.
,
48
(
4
), pp.
637
646
.
2.
da Silva Monteiro
,
L. L.
,
Netto
,
T. A.
, and
da Camara Monteiro
,
P. C.
,
2016
, “
On the Dynamic Collapse of Cylindrical Shells Under Impulsive Pressure Loadings
,”
ASME J. Offshore Mech. Arct. Eng.
,
138
(
4
), p. 041101.
3.
Lam
,
K. Y.
,
Zong
,
Z.
, and
Wang
,
Q. X.
,
2003
, “
Dynamic Response of a Laminated Pipeline on the Seabed Subjected to Underwater Shock
,”
Comp. Part B: Eng.
,
34
(
1
), pp.
59
66
.
4.
Walters
,
A. P.
,
Didoszak
,
J. M.
, and
Kwon
,
Y. W.
,
2013
, “
Explicit Modeling of Solid Ocean Floor in Shallow Underwater Explosions
,”
Shock Vib.
,
20
, pp.
189
197
.
5.
Higa
,
Y.
,
Iyama
,
H.
, and
Itoh
,
S.
,
2020
, “
Computational Modeling and Simulation for Unexploded Ordnance Disposal Problem at the Seabed
,”
IOSR J. Mech. Civil Eng.
,
17
(
2
), pp.
40
44
.
6.
Bartolini
,
L. M.
,
Marchinonni
,
L.
,
Molinari
,
C.
, and
Parrella
,
A.
,
2015
, “
Effects of Underwater Explosion on Pipeline Integrity
,”
Proceedings of the ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering (Pipeline and Riser Technology, Vol. 5A)
,
St. John's, Newfoundland, Canada
, May 31–June 5. p. V05AT04A004. ASME.
7.
Klaseboer
,
E.
,
Hung
,
K. C.
,
Wang
,
C.
,
Wang
,
C. W.
,
Khoo
,
B. C.
,
Boyce
,
P.
,
Debono
,
S.
, and
Charlier
,
H.
,
2005
, “
Experimental and Numerical Investigation of the Dynamics of an Underwater Explosion Bubble Near a Resilient/Rigid Structure
,”
J. Fluid Mech.
,
537
(
1
), pp.
387
413
.
8.
Wang
,
H.
,
Cheng
,
Y. S.
,
Liu
,
J.
, and
Gan
,
L.
,
2016
, “
The Fluid–Solid Interaction Dynamics Between Underwater Explosion Bubble and Corrugated Sandwich Plate
,”
Shock Vib.
,
2016
, pp.
1
21
.
9.
Liu
,
W. T.
,
Ming
,
F. R.
,
Zhang
,
A. M.
,
Miao
,
X. H.
, and
Liu
,
Y. L.
,
2018
, “
Continuous Simulation of the Whole Process of Underwater Explosion Based on Eulerian Finite Element Approach
,”
Appl. Ocean Res.
,
80
, pp.
125
135
.
10.
Nguyen
,
A. T.
,
2020
, “
The Application of CEL Technique to Simulate the Behavior of an Underwater Explosion Bubble in the Vicinity of a Rigid Wall
,”
Appl. Mech. Mater.
,
902
, pp.
126
139
.
11.
Gan
,
N.
,
Liu
,
L. T.
,
Yao
,
X. L.
,
Wang
,
J. X.
, and
Wu
,
W. B.
,
2021
, “
Experimental and Numerical Investigation on the Dynamic Response of a Simplified Open Floating Slender Structure Subjected to Underwater Explosion Bubble
,”
Ocean Eng.
,
219
, p.
108308
.
12.
De
,
A.
,
Niemiec
,
A.
, and
Zimmie
,
T. F.
,
2017
, “
Physical and Numerical Modeling to Study Effects of an Underwater Explosion on a Buried Tunnel
,”
J. Geotech. Geoenviron. Eng.
,
143
(
5
), p.
04017002
.
13.
De
,
A.
, and
Zimmie
,
T. F.
,
1507–1515
, “
Response of Tunnel in Saturated Soil to an Underwater Explosion
,”
Poromechanics VI: Proceedings of the Sixth Biot Conference on Poromechanics
,
Paris, France
,
June 9–13
, pp.
1507
1515
.
14.
Yu
,
H.
,
Wang
,
Z.
,
Yuan
,
Y.
, and
Li
,
W.
,
2015
, “
Numerical Analysis of Internal Blast Effects on Underground Tunnel in Soils
,”
Struct. Infrastruct. Eng.
,
12
(
9
), pp.
1090
1105
.
15.
Mussa
,
M. H.
,
Mutalib
,
A. A.
,
Hamid
,
R.
,
Naidu
,
S. R.
,
Radzi
,
N. A. M.
, and
Abedini
,
M.
,
2017
, “
Assessment of Damage to an Underground Box Tunnel by a Surface Explosion
,”
Tunnell. Undergr. Space Technol.
,
66
, pp.
64
76
.
16.
Tiwari
,
R.
,
Chakraborty
,
T.
, and
Matsagar
,
V.
,
2017
, “
Dynamic Analysis of Tunnel in Soil Subjected to Internal Blast Loading
,”
Geotech. Geol. Eng.
,
35
(
4
), pp.
1491
1512
.
17.
Tiwari
,
R.
,
Chakraborty
,
T.
, and
Matsagar
,
V.
,
2018
, “
Analysis of Curved Tunnels in Soil Subjected to Internal Blast Loading
,”
Acta Geotech.
,
15
(
2
), pp.
509
528
.
18.
Ambrosini
,
D.
, and
Luccioni
,
B.
,
2020
, “
Effects of Underground Explosions on Soil and Structures
,”
Undergr. Space
,
5
(
4
), pp.
324
338
.
19.
Rashiddel
,
A.
,
Kharghani
,
M.
,
Dias
,
D.
, and
Hajihassani
,
M.
,
2020
, “
Numerical Study of the Segmental Tunnel Lining Behavior Under a Surface Explosion–Impact of the Longitudinal Joints Shape
,”
Comput. Geotech.
,
128
, p.
103822
.
20.
Ducan
,
R.
,
1962
, “
American’s Use of Sea Mines
,”
Report ADA061490, United States Naval Ordnance Laboratory
, p.
69
.
21.
Bjørn
,
T. B.
, and
Dan
,
A. B.
,
2013
, “
Fant 300 kilos mine ved norsk gassrørledning (in Norwegian)
,”
E24 webpage
, Accessed January 2022.
22.
Liu
,
Z.
,
Igland
,
R.
,
Bruaseth
,
S.
,
Ercoli-Malacari
,
L.
, and
Lillebø
,
O. A.
,
2019
, “
A Design Practice for Subsea Pipeline Subjected to UXO Hazards
,”
Proceedings of the ASME 2019 International Conference on Offshore Mechanics and Arctic Engineering ((Pipelines, Risers, and Subsea Systems, Vol. 5B)
,
Glasgow, Scotland, UK
,
June 9–14
, p. V05BT04A026. ASME.
23.
Smith
,
M.
,
2020
, “
ABAQUS/Standard User’s Manual
,”
Version 2020, Dassault Systèmes Simulia Corp.
24.
Wang
,
Y. G.
,
Liao
,
C. C.
,
Wang
,
J. H.
, and
Wang
,
W.
,
2018
, “
Numerical Study for Dynamic Response of Marine Sediments Subjected to Underwater Explosion
,”
Ocean Eng.
,
156
, pp.
72
81
.
25.
Sun
,
Y.
,
Tian
,
J.
,
Zhang
,
Z.
, and
Shi
,
M.
,
2020
, “
Experiment and Numerical Simulation Study on the Near-Field Underwater Explosion of Aluminized Explosive
,”
J. Vib. Shock
,
39
(
14
), pp.
395
406
.
26.
Luccioni
,
B.
,
Ambrosini
,
D.
,
Nurick
,
G.
, and
Snyman
,
I.
,
2009
, “
Craters Produced by Underground Explosions
,”
Comput. Struct.
,
87
(
21
), pp.
1366
1373
.
27.
Ambrosini
,
D.
,
Luccioni
,
B.
, and
Danesi
,
R.
,
2004
, “
Influence of the Soil Properties on Craters Produced by Explosions on the Soil Surface
,”
Mecánica Computacional
, Vol. XXIII, G. C. Buscaglia, E. A. Dari, and O. M. Zamonsky, eds., pp.
571
590
.
28.
Cowper
,
G. R.
, and
Symonds
,
P. S.
,
1957
, “
Strain-Hardning and Strain-Rate Effects in the Impact Loading of Cantilever Beams
,”
Technical Report AD0144762
,
Brown University, Providence, RI
.
29.
Jones
,
N.
,
1989
, “On the Dynamic Inelastic Failure of Beams,”
Structural Failure
, Wiley, pp.
133
159
.
30.
Storheim
,
M.
, and
Amdahl
,
J.
,
2017
, “
On the Sensitivity to Work Hardening and Strain-Rate Effects in Nonlinear FEM Analysis of Ship Collisions
,”
Ships Offshore Struct.
,
12
(
1
), pp.
100
115
.
31.
Liu
,
Z.
,
2020
, “
Numerical Simulation of Dropped Container Impacts With an Offshore Platform Deck in the North Sea
,”
Proc. Inst. Mech. Eng. Part M: J. Eng. Maritime Environ.
,
236
(
1
), pp.
273
282
.
32.
Cole, R. H., 1948, Underwater Explosions, Princeton University Press, Princeton, NJ.
33.
Zamyshlyaev
,
B. V.
, and
Yakovlev
,
Y. S.
,
1973
, “
Dynamic Loads in Underwater Explosion
,”
Report AD757183, National Technical Information Service
.
34.
Wierzbicki
,
T.
, and
Fatt
,
M. S. H.
,
1993
, “
Damage Assessment of Cylinders Due to Impact and Explosive Loading
,”
Int. J. Impact Eng.
,
13
(
2
), pp.
215
241
.
35.
Brochard
,
K.
,
Le Sourne
,
H.
, and
Barras
,
G.
,
2020
, “
Estimation of the Response of a Deeply Immersed Cylinder to the Shock Wave Generated by an Underwater Explosion
,”
Marine Struct.
,
72
, p.
102786
.
You do not currently have access to this content.