Abstract

It is essential for a Navier–Stokes equations solver based on a projection method to be able to solve the resulting Poisson equation accurately and efficiently. In this paper, we present numerical solutions of the 2D Navier–Stokes equations using the fourth-order generalized harmonic polynomial cell (GHPC) method as the Poisson equation solver. Particular focus is on the local and global accuracy of the GHPC method on non-uniform grids. Our study reveals that the GHPC method enables the use of more stretched grids than the original HPC method. Compared with a second-order central finite difference method (FDM), global accuracy analysis also demonstrates the advantage of applying the GHPC method on stretched non-uniform grids. An immersed-boundary method is used to deal with general geometries involving the fluid–structure interaction problems. The Taylor–Green vortex and flow around a smooth circular cylinder and square are studied for the purpose of verification and validation. Good agreement with reference results in the literature confirms the accuracy and efficiency of the new 2D Navier–Stokes equation solver based on the present immersed-boundary GHPC method utilizing non-uniform grids. The present Navier–Stokes equations solver uses second-order central FDM and Quadratic Upstream Interpolation for Convective Kinematics scheme for the discretization of the diffusion term and advection term, respectively, which may be replaced by other higher-order schemes to further improve the accuracy.

References

1.
Shen
,
C.
,
Sun
,
F.
, and
Xia
,
X.
,
2014
, “
Implementation of Density-Based Solver for All Speeds in the Framework of Openfoam
,”
Comput. Phys. Commun.
,
185
(
10
), pp.
2730
2741
.
2.
Vermeire
,
B.
,
Witherden
,
F.
, and
Vincent
,
P.
,
2017
, “
On the Utility of GPU Accelerated High-Order Methods for Unsteady Flow Simulations: A Comparison With Industry-Standard Tools
,”
J. Comput. Phys.
,
334
, pp.
497
521
.
3.
Chorin
,
A. J.
,
1967
, “
The Numerical Solution of the Navier–Stokes Equations for an Incompressible Fluid
,”
Bull. Am. Math. Soc.
,
73
(
6
), pp.
928
931
.
4.
Témam
,
R.
,
1969
, “
Sur l’approximation de la solution des équations de Navier–Stokes par la méthode des pas fractionnaires (I)
,”
Arch. Ration. Mech. Anal.
,
32
(
2
), pp.
135
153
.
5.
Xiao
,
F.
,
1999
, “
A Computational Model for Suspended Large Rigid Bodies in 3d Unsteady Viscous Flows
,”
J. Comput. Phys.
,
155
(
2
), pp.
348
379
.
6.
Liao
,
K.
, and
Hu
,
C.
,
2013
, “
A Coupled FDM–FEM Method for Free Surface Flow Interaction With Thin Elastic Plate
,”
J. Marine Sci. Technol.
,
18
(
1
), pp.
1
11
.
7.
Saghi
,
H.
, and
Hashemian
,
A.
,
2018
, “
Multi-Dimensional NURBS Model for Predicting Maximum Free Surface Oscillation in Swaying Rectangular Storage Tanks
,”
Comput. Math. Appl.
,
76
(
10
), pp.
2496
2513
.
8.
Vanselow
,
R.
,
1996
, “
Relations Between FEM and FVM Applied to the Poisson Equation
,”
Computing
,
57
(
2
), pp.
93
104
.
9.
Liu
,
X.-D.
,
Osher
,
S.
, and
Chan
,
T.
,
1994
, “
Weighted Essentially Non-Oscillatory Schemes
,”
J. Comput. Phys.
,
115
(
1
), pp.
200
212
.
10.
Bihs
,
H.
,
Kamath
,
A.
,
Chella
,
M. A.
,
Aggarwal
,
A.
, and
Arntsen
,
Ø. A.
,
2016
, “
A New Level Set Numerical Wave Tank With Improved Density Interpolation for Complex Wave Hydrodynamics
,”
Comput. Fluids
,
140
, pp.
191
208
.
11.
Hu
,
C.
, and
Kashiwagi
,
M.
,
2004
, “
A Cip-Based Method for Numerical Simulations of Violent Free-Surface Flows
,”
J. Marine Sci. Technol.
,
9
(
4
), pp.
143
157
.
12.
Vanselow
,
R.
,
1996
, “
Relations Between FEM and FVM Applied to the Poisson Equation
,”
Computing
,
57
(
2
), pp.
93
104
.
13.
Uhlmann
,
M.
,
2005
, “
An Immersed Boundary Method With Direct Forcing for the Simulation of Particulate Flows
,”
J. Comput. Phys.
,
209
(
2
), pp.
448
476
.
14.
Guermond
,
J.-L.
, and
Shen
,
J.
,
2003
, “
Velocity-Correction Projection Methods for Incompressible Flows
,”
SIAM J. Numer. Anal.
,
41
(
1
), pp.
112
134
.
15.
Chiou
,
J.-C.
, and
Wu
,
S.-D.
,
1999
, “
On the Generation of Higher Order Numerical Integration Methods Using Lower Order Adams–Bashforth and Adams–Moulton Methods
,”
J. Comput. Appl. Math.
,
108
(
1–2
), pp.
19
29
.
16.
Hejlesen
,
M. M.
,
Rasmussen
,
J. T.
,
Chatelain
,
P.
, and
Walther
,
J. H.
,
2013
, “
A High Order Solver for the Unbounded Poisson Equation
,”
J. Comput. Phys.
,
252
, pp.
458
467
.
17.
Guillet
,
T.
, and
Teyssier
,
R.
,
2011
, “
A Simple Multigrid Scheme for Solving the Poisson Equation With Arbitrary Domain Boundaries
,”
J. Comput. Phys.
,
230
(
12
), pp.
4756
4771
.
18.
Press
,
W. H.
,
Teukolsky
,
S. A.
,
Flannery
,
B. P.
, and
Vetterling
,
W. T.
,
1992
,
Numerical Recipes in Fortran 77: Volume 1, Volume 1 of Fortran Numerical Recipes: The Art of Scientific Computing
,
Cambridge University Press
.
19.
Bardazzi
,
A.
,
Lugni
,
C.
,
Antuono
,
M.
,
Graziani
,
G.
, and
Faltinsen
,
O.
,
2015
, “
Generalized HPC Method for the Poisson Equation
,”
J. Comput. Phys.
,
299
, pp.
630
648
.
20.
Yu
,
X.
,
Fuhrman
,
D. R.
,
Shao
,
Y.
,
Liao
,
K.
,
Duan
,
W.
, and
Zhang
,
Y.
,
2021
, “
Enhanced Solution of 2d Incompressible Navier–Stokes Equations Based on an Immersed-Boundary Generalized Harmonic Polynomial Cell Method
,”
Eur. J. Mech.-B/Fluids
,
89
, pp.
29
44
.
21.
Shao
,
Y.-L.
, and
Faltinsen
,
O. M.
,
2012
, “
Towards Efficient Fully-Nonlinear Potential-Flow Solvers in Marine Hydrodynamics
,”
International Conference on Offshore Mechanics and Arctic Engineering
,
Rio de Janeiro, Brazil
,
July 1
, Vol. 44915,
American Society of Mechanical Engineers
, pp.
369
380
.
22.
Shao
,
Y.-L.
, and
Faltinsen
,
O. M.
,
2014
, “
A Harmonic Polynomial Cell (HPC) Method for 3d Laplace Equation Wxith Application in Marine Hydrodynamics
,”
J. Comput. Phys.
,
274
, pp.
312
332
.
23.
Hanssen
,
F.-C. W.
,
Greco
,
M.
, and
Shao
,
Y.
,
2015
, “
The Harmonic Polynomial Cell Method for Moving Bodies Immersed in a Cartesian Background Grid
,”
International Conference on Offshore Mechanics and Arctic Engineering
,
St. John, Canada
,
June 30
, vol. 56598,
American Society of Mechanical Engineers
, p.
V011T12A019
.
24.
Hanssen
,
F.-C.
,
Bardazzi
,
A.
,
Lugni
,
C.
, and
Greco
,
M.
,
2018
, “
Free-Surface Tracking in 2d With the Harmonic Polynomial Cell Method: Two Alternative Strategies
,”
Int. J. Numer. Methods Eng.
,
113
(
2
), pp.
311
351
.
25.
Tong
,
C.
,
Shao
,
Y.
,
Bingham
,
H.
, and
Hanssen
,
F.
,
2021
, “
An Adaptive Harmonic Polynomial Cell Method With Immersed Boundaries: Accuracy, Stability and Applications
,”
Int. J. Numer. Methods Eng.
,
122
, pp.
2945
2980
.
26.
Zhu
,
W.
,
Greco
,
M.
, and
Shao
,
Y.
,
2017
, “
Improved HPC Method for Nonlinear Wave Tank
,”
Int. J. Naval Archit. Ocean Eng.
,
9
(
6
), pp.
598
612
.
27.
Tong
,
C.
,
Shao
,
Y.
,
Hanssen
,
F.-C. W.
,
Li
,
Y.
,
Xie
,
B.
, and
Lin
,
Z.
,
2019
, “
Numerical Analysis on the Generation, Propagation and Interaction of Solitary Waves by a Harmonic Polynomial Cell Method
,”
Wave Motion
,
88
, pp.
34
56
.
28.
Ma
,
S.
,
Hanssen
,
F.-C. W.
,
Siddiqui
,
M. A.
,
Greco
,
M.
, and
Faltinsen
,
O. M.
,
2017
, “
Local and Global Properties of the Harmonic Polynomial Cell Method: In-depth Analysis in Two Dimensions
,”
Int. J. Numer. Methods Eng.
,
113
(
4
), pp.
681
718
.
29.
Leonard
,
B. P.
,
1979
, “
A Stable and Accurate Convective Modelling Procedure Based on Quadratic Upstream Interpolation
,”
Comput. Methods Appl. Mech. Eng.
,
19
(
1
), pp.
59
98
.
30.
Liu
,
Y.
, and
Sen
,
M. K.
,
2009
, “
A Practical Implicit Finite-Difference Method: Examples From Seismic Modelling
,”
J. Geophys. Eng.
,
6
(
3
), pp.
231
249
.
31.
Yang
,
J.
, and
Balaras
,
E.
,
2006
, “
An Embedded-Boundary Formulation for Large-Eddy Simulation of Turbulent Flows Interacting With Moving Boundaries
,”
J. Comput. Phys.
,
215
(
1
), pp.
12
40
.
32.
Yang
,
J.
,
Preidikman
,
S.
, and
Balaras
,
E.
,
2008
, “
A Strongly Coupled, Embedded-Boundary Method for Fluid–Structure Interactions of Elastically Mounted Rigid Bodies
,”
J. Fluids Struct.
,
24
(
2
), pp.
167
182
.
33.
Yang
,
J.
, and
Stern
,
F.
,
2012
, “
A Simple and Efficient Direct Forcing Immersed Boundary Framework for Fluid–Structure Interactions
,”
J. Comput. Phys.
,
231
(
15
), pp.
5029
5061
.
34.
Liu
,
C.
, and
Hu
,
C.
,
2014
, “
An Efficient Immersed Boundary Treatment for Complex Moving Object
,”
J. Comput. Phys.
,
274
, pp.
654
680
.
35.
Schlichting
,
H.
, and
Gersten
,
K.
,
2016
,
Boundary-Layer Theory
,
Springer
.
36.
Oseen
,
C.
,
1910
, “
Uber die Stokes’ sche formel und uber eine verwandte aufgabe in der hydrodynamik arkiv mat
,”
Astron. och Fysik
,
6
(
1
), pp.
359
-
310
.
37.
Wieselsberger
,
C.
,
1922
, “Further Information on the Laws of Fluid Resistance,” Technical Report Archive & Image,
23
(
121
)
38.
Sumer
,
B. M.
,
2006
,
Hydrodynamics Around Cylindrical Strucures
, Vol. 26,
World Scientific
.
39.
Liu
,
C.
,
Zheng
,
X.
, and
Sung
,
C.
,
1998
, “
Preconditioned Multigrid Methods for Unsteady Incompressible Flows
,”
J. Comput. Phys.
,
139
(
1
), pp.
35
57
.
40.
Ji
,
C.
,
Munjiza
,
A.
, and
Williams
,
J.
,
2012
, “
A Novel Iterative Direct-Forcing Immersed Boundary Method and Its Finite Volume Applications
,”
J. Comput. Phys.
,
231
(
4
), pp.
1797
1821
.
41.
Mimeau
,
C.
,
Gallizio
,
F.
,
Cottet
,
G.-H.
, and
Mortazavi
,
I.
,
2015
, “
Vortex Penalization Method for Bluff Body Flows
,”
Int. J. Numer. Methods Fluids
,
79
(
2
), pp.
55
83
.
42.
Sumer
,
B. M.
, and
Fuhrman
,
D. R
,
2020
,
Turbulence in Coastal and Civil Engineering
, Vol. 52,
World Scientific
.
43.
Yoon
,
D.-H.
,
Yang
,
K.-S.
, and
Choi
,
C.-B.
,
2010
, “
Flow Past a Square Cylinder With an Angle of Incidence
,”
Phys. Fluids
,
22
(
4
), p.
043603
.
44.
Singh
,
A.
,
De
,
A.
,
Carpenter
,
V.
,
Eswaran
,
V.
, and
Muralidhar
,
K.
,
2009
, “
Flow Past a Transversely Oscillating Square Cylinder in Free Stream at Low Reynolds Numbers
,”
Int. J. Numer. Methods Fluids
,
61
(
6
), pp.
658
682
.
45.
Kumar De
,
A.
, and
Dalal
,
A.
,
2006
, “
Numerical Simulation of Unconfined Flow Past a Triangular Cylinder
,”
Int. J. Numer. Methods Fluids
,
52
(
7
), pp.
801
821
.
46.
Sharma
,
A.
, and
Eswaran
,
V.
,
2004
, “
Heat and Fluid Flow Across a Square Cylinder in the Two-Dimensional Laminar Flow Regime
,”
Numer. Heat Transfer Part A: Appl.
,
45
(
3
), pp.
247
269
.
47.
Sohankar
,
A.
,
Norberg
,
C.
, and
Davidson
,
L.
,
1999
, “
Simulation of Three-Dimensional Flow Around a Square Cylinder at Moderate Reynolds Numbers
,”
Phys. Fluids
,
11
(
2
), pp.
288
306
.
48.
Saha
,
A.
,
Biswas
,
G.
, and
Muralidhar
,
K.
,
2003
, “
Three-Dimensional Study of Flow Past a Square Cylinder at Low Reynolds Numbers
,”
Int. J. Heat Flzuid Flow
,
24
(
1
), pp.
54
66
.
You do not currently have access to this content.