Abstract

The mechanical properties of welded DH36 steel at low temperatures are important to the safety of structures in Polar areas. The purpose of the study is to investigate the static and cyclic behavior of welded DH36 steel at low temperatures based on tensile and fatigue tests. The ductile to brittle transition and fatigue ductile to brittle transition of welded DH36 steel occurred at low temperatures. Finally, some relevant applications of the results within the context of polar engineering and design are discussed in the last part of the present study.

References

1.
Suyuthi
,
A.
,
Leira
,
B. J.
, and
Riska
,
K.
,
2013
, “
Fatigue Damage of Ship Hulls Due to Local Ice-Induced Stresses
,”
Appl. Ocean Res.
,
42
, pp.
87
104
.
2.
Zhao
,
W.
,
Cao
,
J.
,
Feng
,
G.
, and
Ren
,
H.
,
2018
, “
Investigation on Temperature Dependence of Yielding Strength for Marine DH36 Steel
,”
Shipbuilding China
,
59
(
3
), pp.
108
115
.
3.
Yan
,
J.-B.
,
Liew
,
J. Y. R.
,
Zhang
,
M.-H.
, and
Wang
,
J.-Y.
,
2014
, “
Mechanical Properties of Normal Strength Mild Steel and High Strength Steel S690 in Low Temperature Relevant to Arctic Environment
,”
Mater. Des.
,
61
, pp.
150
159
.
4.
Kumar
,
S.
, and
Ghosh
,
P. K.
,
2018
, “
TIG Arc Processing Improves Tensile and Fatigue Properties of Surface Modified of AISI 4340 Steel
,”
Int. J. Fatigue
,
116
, pp.
306
316
.
5.
Wang
,
X.
,
Zhang
,
W.
,
Ni
,
J.
,
Zhang
,
T.
,
Gong
,
J.
, and
Wahab
,
M. A.
,
2019
, “
Quantitative Description Between Pre-Fatigue Damage and Residual Tensile Properties of P92 Steel
,”
Mater. Sci. Eng.: A
,
744
, pp.
415
425
.
6.
Polezhayeva
,
H.
,
Toumpis
,
A. I.
,
Galloway
,
A. M.
,
Molter
,
L.
,
Ahmad
,
B.
, and
Fitzpatrick
,
M. E.
,
2015
, “
Fatigue Performance of Friction Stir Welded Marine Grade Steel
,”
Int. J. Fatigue
,
81
, pp.
162
170
.
7.
Darcis
,
P. P.
,
Katsumoto
,
H.
,
Payares-Asprino
,
M. C.
,
Liu
,
S.
, and
Siewert
,
T. A.
,
2010
, “
Cruciform Fillet Welded Joint Fatigue Strength Improvements by Weld Metal Phase Transformations
,”
Fatigue Fract. Eng. Mater. Struct.
,
31
(
2
), pp.
125
136
.
8.
Kim
,
K. J.
,
Lee
,
J. H.
,
Park
,
D. K.
,
Jung
,
B. G.
,
Han
,
X.
, and
Paik
,
J. K.
,
2016
, “
An Experimental and Numerical Study on Nonlinear Impact Responses of Steel-Plated Structures in an Arctic Environment
,”
Int. J. Impact Eng.
,
93
, pp.
99
115
.
9.
Kang
,
K.
,
Goo
,
B.
,
Kim
,
J.
,
Kim
,
D.
, and
Kim
,
J.
,
2009
, “
Experimental Investigation on Static and Fatigue Behavior of Welded sm490a Steel Under Low Temperature
,”
Int. J. Steel Struct.
,
9
(
1
), pp.
85
91
.
10.
Xie
,
J.
,
Zhao
,
X.
, and
Yan
,
J.-B.
,
2018
, “
Mechanical Properties of High Strength Steel Strand at Low Temperatures: Tests and Analysis
,”
Constr. Build. Mater.
,
189
, pp.
1076
1092
.
11.
Fricke
,
W.
,
von Lilienfeld-Toal
,
A.
, and
Paetzold
,
H.
,
2012
, “
Fatigue Strength Investigations of Welded Details of Stiffened Plate Structures in Steel Ships
,”
Int. J. Fatigue
,
34
(
1
), pp.
17
26
.
12.
Bertini
,
L.
,
Frendo
,
F.
, and
Marulo
,
G.
,
2018
, “
Fatigue Life Assessment of Welded Joints by Two Local Stress Approaches: The Notch Stress Approach and the Peak Stress Method
,”
Int. J. Fatigue
,
110
, pp.
246
253
.
13.
ASTM E8/E8M-21
,
2021
, “Standard Test Methods for Tension Testing of Metallic Materials,” ASTM International, West Conshohocken, PA, p.
27
.
14.
Min
,
D.
,
Shim
,
C.
,
Shin
,
D.
, and
Cho
,
S.
,
2011
, “
On the Mechanical Properties at Low Temperatures for Steels of Ice-Class Vessels
,”
J. Soc. Naval Architects Korea
,
48
(
2
), pp.
171
177
.
15.
Edagawa
,
K.
,
Kamimura
,
Y.
,
Iskandarov
,
A. M.
,
Umeno
,
Y.
, and
Takeuchi
,
S.
,
2019
, “
Peierls Stresses Estimated by a Discretized Peierls–Nabarro Model for a Variety of Crystals
,”
Materialia
,
5
, p.
100218
.
16.
Li
,
Y.
,
Ren
,
X.
,
He
,
J.
, and
Zhang
,
Z.
,
2018
, “
Constraint Effect on the Brittle-to-Ductile Transition of Single-Crystal Iron Induced by Dislocation Mobility
,”
Int. J. Mech. Sci.
,
149
, pp.
212
223
.
17.
Chen
,
F.
,
2014
, “
Development and Production of DH36 Jacket Platform Steel Plate
,”
Shandong Metall.
,
38
, pp.
7
9
.
18.
ASTM E466-21
,
2021
, “Standard Practice for Conducting Constant Amplitude Axial Fatigue Tests of Metallic Materials,” ASTM International, West Conshohocken, PA.
19.
Matsuno
,
M.
,
Adachi
,
S.
,
Nakayama
,
M.
, and
Watanabe
,
K.
, “
A Temperature-Compensated Bridge Circuit
,”
Proceedings of 1993 IEEE Instrumentation and Measurement Technology Conference
, pp.
737
740
.
20.
ISO
,
2012
,
Metallic Materials—Fatigue Testing—Statistical Planning and Analysis of Data
,
International Organization for Standardization
,
Vernier, Geneva, Switzerland
.
21.
Wang
,
Y.
,
Liu
,
J.
,
Hu
,
J.
,
Garbatov
,
Y.
, and
Guedes Soares
,
C.
,
2020
, “
Fatigue Strength of EH36 Steel Welded Joints and Base Material at Low-Temperature
,”
Int. J. Fatigue
,
142
, p.
105896
.
22.
Fan
,
J. L.
,
Guo
,
X. L.
,
Wu
,
C. W.
, and
Zhao
,
Y. G.
,
2011
, “
Research on Fatigue Behavior Evaluation and Fatigue Fracture Mechanisms of Cruciform Welded Joints
,”
Mater. Sci. Eng.: A
,
528
(
29–30
), pp.
8417
8427
.
23.
Xu
,
W.
,
Westerbaan
,
D.
,
Nayak
,
S. S.
,
Chen
,
D. L.
,
Goodwin
,
F.
,
Biro
,
E.
, and
Zhou
,
Y.
,
2012
, “
Microstructure and Fatigue Performance of Single and Multiple Linear Fiber Laser Welded DP980 Dual-Phase Steel
,”
Mater. Sci. Eng.: A
,
553
, pp.
51
58
.
24.
Mcevily
,
A. J.
, and
Matsunaga
,
H.
,
2010
, “
On Fatigue Striatums
,”
Sci. Iranica
,
17
(
1
), pp.
75
82
.
25.
Li
,
S.
,
Kang
,
Y.
,
Zhu
,
G.
, and
Kuang
,
S.
,
2015
, “
Microstructure and Fatigue Crack Growth Behavior in Tungsten Inert Gas Welded DP780 Dual-Phase Steel
,”
Mater. Des.
,
85
, pp.
180
189
.
26.
Walters
,
C. L.
,
Alvaro
,
A.
, and
Maljaars
,
J.
,
2016
, “
The Effect of Low Temperatures on the Fatigue Crack Growth of S460 Structural Steel
,”
Int. J. Fatigue
,
82
, pp.
110
118
.
27.
Laird
,
C.
, and
Krause
,
A. R.
,
1968
, “
A Theory of Crack Nucleation in High Strain Fatigue
,”
Int. J. Fract.
,
4
(
3
), pp.
219
231
.
28.
Lu
,
B.
, and
Zheng
,
X.
,
1992
, “
Predicting Fatigue Crack Initiation Life of an Aluminium Alloy at Low Temperatures
,”
Fatigue Fract. Eng. Mater. Struct.
,
15
(
12
), pp.
1213
1221
.
29.
DNV
,
2008
, “Rules for Classification of Ships—Part 3—Chapter 3: Newbuildings—Hull and Equipment—Main Class—Hull Equipment and Safety,” 5, Det Norske Veritas, Norway.
30.
ABS
,
2015
,
Guide for Vessels Operating in Low Temperature Environments
,
American Bureau of Shipping
,
The State of New York
.
31.
BSI
,
2015
, “Guide to Fatigue Design and Assessment of Steel Products,” BSI Standards, London.
32.
Lieberman
,
G. J.
,
1957
,
Tables for One-Sided Statistical Tolerance Limits
,
Stanford University
,
Stanford, CA
.
You do not currently have access to this content.