Abstract

Spray generated by ships traveling in cold oceans often leads to topside icing, which can be dangerous to vessels. Estimation of the spray flux is a first step in predicting icing accumulation. The amount of spray water, the duration of exposure to the spray, and the frequency at which the spray is generated are all important parameters in estimating the spray flux. Most existing spray flux formulae are based on field observations from small fishing vessels. They consider meteorological and oceanographic parameters but neglect the vessel behavior. Ship heave and pitch motions, together with ship speed, determine the frequency of spray events. Thus, the existing formulae are not generally applicable to different sizes and types of vessels. This paper develops simple methods to quantify spray properties in terms that can be applied to vessels of any size or type. Formulae to estimate water content and spray duration are derived based on principles of energy conservation and dimensional analysis. To estimate spray frequency considering ship motions, a theoretical model is proposed. The model inputs are restricted to ship’s principal particulars, operating conditions, and environmental conditions. Wave-induced motions are estimated using semi-empirical analytical expressions. A novel spray threshold is developed to separate deck wetness frequency from spray frequency. Spray flux estimates are validated against full-scale field measurements available in the open literature with reasonable agreement.

References

References
1.
Mintu
,
S. A.
,
Molyneux
,
D.
, and
Colbourne
,
B.
,
2019
, “
Multi-phase Simulation of Droplet Trajectories of Wave-Impact Sea Spray Over a Vessel
,”
Proceedings of the ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering
,
Glasgow, Scotland, UK
,
June 9–14
.
2.
Ryerson
,
C. C.
,
2013
,
Icing Management for Coast Guard Assets, ERDC/CRREL TR-13-7
,
U.S. Army Engineer Research and Development Center
,
Hanover, NH
.
3.
Lebiedzlnski
,
K.
, and
Thomas
,
W. L.
,
1993
, “
Prediction of Bow Spray Frequency for a Naval Combatant
,”
12th International Conference on Port and Ocean Engineering Under Arctic Conditions
,
Hamburg, Germany
,
Aug. 17–20
, pp.
824
834
.
4.
Mintu
,
S.
,
Molyneux
,
D.
, and
Oldford
,
D.
,
2016
, “
A State-of-the-Art Review of Research on Ice Accretion Measurements and Modelling
,”
Arctic Technology Conference
,
St. John’s, NL, Canada
,
Oct. 24
.
5.
Overland
,
J.
,
1990
, “
Prediction of Vessel Icing for Near-Freezing Sea Temperatures
,”
Weather Forecast.
,
5
(
1
), pp.
62
77
. 10.1175/1520-0434(1990)005<0062:POVIFN>2.0.CO;2
6.
Makkonen
,
L.
,
Brown
,
R. D.
, and
Mitten
,
P. T.
,
1991
, “
Comments on ‘Prediction of Vessel Icing for Near-Freezing Sea Temperatures,’
Weather Forecast.
,
6
(
4
), pp.
565
567
. 10.1175/1520-0434(1991)006<0565:COOVIF>2.0.CO;2
7.
Thomas
W. L.
, III
1991
,
Bering Sea Topside Icing Probabilities for Two Naval Combatants
,
David Taylor Research Center
,
Bethesda, MD
.
8.
Zakrzewski
,
W. P.
,
1989
, “
The Use of Ship Icing Models for Forecasting Icing Rates on Sea-Going Ships
,”
Proceedings of the 10th International Conference on Port and Ocean Engineering Under Arctic Conditions
,
Lulea, Sweden
,
June 12–16
, pp.
1454
1467
.
9.
Dehghani
,
S. R.
,
Muzychka
,
Y. S.
, and
Naterer
,
G. F.
,
2016
, “
Droplet Trajectories of Wave-Impact Sea Spray on a Marine Vessel
,”
Cold Reg. Sci. Technol.
,
127
, pp.
1
9
. 10.1016/j.coldregions.2016.03.010
10.
Samuelsen
,
E. M.
,
Edvardsen
,
K.
, and
Graversen
,
R. G.
,
2017
, “
Modelled and Observed Sea-Spray Icing in Arctic-Norwegian Waters
,”
Cold Reg. Sci. Technol.
,
134
, pp.
54
81
. 10.1016/j.coldregions.2016.11.002
11.
Borisenkov
,
Y. P.
, and
Pchelko
,
I. G.
,
1975
, “
Indicators for Forecasting Ship Icing
,” USACRREL Draft Transl. No 481.
12.
Horjen
,
I.
,
1989
, “
Numerical Modelling of the Sea Spray Icing on Vessels
,”
Proceedings of the 10th International Conference on Port and Ocean Engineering Under Arctic Conditions
,
Lulea, Sweden
,
June 12–16
.
13.
Zakrzewski
,
W. P.
,
1986
, “
Splashing a Ship with Collision-Generated Spray
,”
Cold Reg. Sci. Technol.
,
14
(
1
), pp.
65
83
. 10.1016/0165-232X(87)90045-0
14.
Katchurin
,
L. G.
,
Gashin
,
L. I.
, and
Smirnov
,
I. A.
,
1974
, “
Icing Rate of Small Displacement Fishing Vessels Under Various Hydro-Meteorological Conditions
,”
Transl. into English from Meteorol. Gidrol. (Moscow)
,
3
, pp.
50
60
.
15.
Brown
,
R. D.
, and
Roebber
,
P.
,
1985
, The Scope of the Ice Accretion Problem in Canadian Waters Related to Offshore Energy and Transportation., Canadian Climate Centre Report 85–13 unpublished manuscript.
16.
Horjen
,
I.
,
Vefsnmo
,
S.
, and
Bjerke
,
P. L.
,
1988
, “Sea Spray Icing on Rigs and Supply Vessels,” Nor. Hydrodyn. Lab. ESARC Report No. 15.
17.
Horjen
,
I.
,
2013
, “
Numerical Modeling of Two-Dimensional Sea Spray Icing on Vessel-Mounted Cylinders
,”
Cold Reg. Sci. Technol.
,
93
, pp.
20
35
. 10.1016/j.coldregions.2013.05.003
18.
Chung
,
K. K.
, and
Lozowski
,
E. P.
,
1998
, “
A Three-Dimensional Time-Dependent Icing Model for a Stern Trawler
,”
J. Ship Res.
,
42
(
4
), pp.
266
273
.
19.
Ryerson
,
C. C.
,
1995
, “
Superstructure Spray and Ice Accretion on a Large U.S. Coast Guard Cutter
,”
Atmos. Res.
,
36
(
3
), pp.
321
337
. 10.1016/0169-8095(94)00045-F
20.
Lozowski
,
E. P.
,
Szilder
,
K.
, and
Makkonen
,
L.
,
2000
, “
Computer Simulation of Marine Ice Accretion
,”
Philos. Trans. Math. Phys. Eng. Sci.
,
358
(
1776
), pp.
2811
2845
. 10.1098/rsta.2000.0687
21.
Shipilova
,
O.
,
Kulyakhtin
,
A.
,
Tsarau
,
A.
,
Libby
,
B.
,
Moslet
,
P. O.
, and
Loset
,
S.
,
2012
, “
Mechanism and Dynamics of Marine Ice Accretion on Vessel Archetypes
,”
Offshore Technology Conference
,
Houston, TX
,
Dec. 3–5
.
22.
Kulyakhtin
,
A.
, and
Tsarau
,
A.
,
2014
, “
A Time-Dependent Model of Marine Icing With Application of Computational Fluid Dynamics
,”
Cold Reg. Sci. Technol.
,
104–105
, pp.
33
44
. 10.1016/j.coldregions.2014.05.001
23.
Dehghani
,
S. R.
,
Naterer
,
G. F.
, and
Muzychka
,
Y. S.
,
2016
, “
Droplet Size and Velocity Distributions of Wave- Impact Sea Spray Over a Marine Vessel
,”
Cold Reg. Sci. Technol.
,
132
, pp.
60
67
. 10.1016/j.coldregions.2016.09.013
24.
Dehghani
,
S. R.
,
Naterer
,
G. F.
, and
Muzychka
,
Y. S.
,
2018
, “
3-D Trajectory Analysis of Wave-Impact Sea Spray Over a Marine Vessel
,”
Cold Reg. Sci. Technol.
,
146
, pp.
72
80
. 10.1016/j.coldregions.2017.11.016
25.
Forest
,
T. W.
,
Lozowski
,
E. P.
, and
Gagnon
,
R.
,
2005
, “
Estimating Marine Icing on Offshore Structures Using RIGICE04
,”
Proceedings of the 11th International Workshop on Atmospheric Icing of Structures
,
Montréal, Quebec, Canada
,
June
.
26.
Zakrzewski
,
W. P.
,
1986
,
Icing of Fishing Vessels. Part I: Splashing a Ship with Spray
, NOAA Technical Memorandum ERL PMEL-66,
Seattle, Washington
.
27.
Panov
,
V. V.
,
1976
, “
Vessel Icing
,”
Proc. AARI
,
334
, p.
262
.
28.
Horjen
,
I.
,
Løset
,
S.
, and
Vefsnmo
,
S.
,
1986
,
Icing Hazards on Supply Vessels and Stand-By Boats, N-7034
,
Norwegian Hydrotechnical Labratory
,
Norway
.
29.
Sasa
,
K.
,
Takeuchi
,
K.
,
Chen
,
C.
,
Faltinsen
,
O. M.
,
Prpić-Oršić
,
J.
,
Valčić
,
M.
,
Mrakovčić
,
T.
, and
Herai
,
N.
,
2019
, “
Evaluation of Speed Loss in Bulk Carriers with Actual Data From Rough Sea Voyages
,”
Ocean Eng.
,
187
, p.
106162
. 10.1016/j.oceaneng.2019.106162
30.
Buchner
,
B.
,
van den Berg
,
J.
,
Helder
,
J.
, and
Bunnik
,
T.
,
2014
, “
Non-Linear Wave Runup Along the Side of Ships Causing Green Water Problems: Experiments and First CFD Calculations
,”
Proceedings of the 33rd International Conference on Ocean, Offshore and Arctic Engineering
,
San Francisco, CA
.
31.
Du
,
Y.
,
Wang
,
W.
,
Wang
,
L.
, and
Huang
,
Y.
,
2017
, “
A Combined First- and Second-Order Theory for the Deckwetness Prediction of Sandglass-Type Floating Body in Irregular Head Waves
,”
Mar. Struct.
,
54
, pp.
23
37
. 10.1016/j.marstruc.2017.03.002
32.
Sapone
,
D. T.
,
1990
,
A Sensitivity Study of Bow Variants on the Distribution of Sea Spray in Regular Head Seas
,
Massachusetts Institute of Technology
,
USA
.
33.
Lloyd
,
A. R. J. M.
,
Salsich
,
J. O.
, and
Zseleczky
,
J. J.
,
1986
,
Effect of Bow Shape on Deck Wetness in Head Seas, EW-17-84
,
United States Naval Academy
,
Annapolis, MD
.
34.
Blackmore
,
R. Z.
, and
Lozowski
,
E. P.
,
1994
, “
An Heuristic Freezing Spray Model of Vessel Icing
,”
International Journal of Offshore and Polar Engineering
,
4
(
2
), pp.
119
126
.
35.
Aalbers
,
A. B.
, and
Poen
,
G. J.
,
2015
, “
Probabilistic Modelling of Marine Icing: An Estimation Method for Spray Water
,”
Arctic Technology Conference
,
St. John’s, NL, Canada
,
Oct. 24–26
.
36.
Dias
,
F.
, and
Ghidaglia
,
J.-M.
,
2018
, “
Slamming: Recent Progress in the Evaluation of Impact Pressures
,”
Annu. Rev. Fluid Mech. Annu. Mech
,
50
(
1
), pp.
243
273
. 10.1146/annurev-fluid-010816-060121
37.
Jensen
,
J.
, and
Mansour
,
A. E.
,
2003
, “
Estimation of the Effect of Green Water and Bow Flare Slamming on the Wave-Induced Vertical Bending Moment Using Closed-Form Expressions
,”
Proceedings of the 3rd International Conference on Hydroelasticity in Marine Technology
,
Oxford, UK
,
Sept. 15–17
,
R. E.
Taylor
, ed., pp.
155
161
.
38.
Bhattacharyya
,
R.
,
1978
,
Dynamics of Marine Vehicles
,
Wiley
,
New York
.
39.
Jensen
,
J.
,
Mansour
,
A. E.
, and
Olsen
,
A. S.
,
2004
, “
Estimation of Ship Motions Using Closed-Form Expressions
,”
Ocean Eng.
,
31
(
1
), pp.
61
85
. 10.1016/S0029-8018(03)00108-2
40.
Cooker
,
M. J.
, and
Peregrine
,
D. H.
,
1995
, “
Pressure-Impulse Theory for Liquid Impact Problems
,”
J. Fluid Mech.
,
297
, pp.
193
214
. 10.1017/S0022112095003053
41.
Watanabe
,
Y.
, and
Ingram
,
D. M.
,
2015
, “
Transverse Instabilities of Ascending Planar Jets Formed by Wave Impacts on Vertical Walls
,”
Proc. R Soc. A Math. Phys. Eng. Sci.
,
471
(
2182
). https://doi.org/10.1098/rspa.2015.0397
42.
Okamura
,
M.
,
1993
, “
Impulsive Pressure Due to Wave Impact on an Inclined Plane Wall
,”
Fluid Dyn. Res.
,
12
(
4
), pp.
215
228
. 10.1016/0169-5983(93)90024-5
43.
Horjen
,
I.
,
2015
, “
Offshore Drilling Rig Ice Accretion Modeling Including a Surficial Brine Film
,”
Cold Reg. Sci. Technol.
,
119
, pp.
84
110
. 10.1016/j.coldregions.2015.07.006
44.
Zakrzewski
,
W. P.
,
Lozowski
,
E. P.
, and
Muggeridge
,
D.
,
1988
, “
Estimating the Extent of the Spraying Zone on a Sea-Going Ship
,”
Ocean Eng.
,
15
(
5
), pp.
413
429
. 10.1016/0029-8018(88)90008-X
You do not currently have access to this content.