Abstract

The structural design of offshore wind turbines is based on the consideration of coupled dynamic phenomena. Wave loads cause the dynamic oscillation of the monopile, and the dynamic oscillation of the monopile affects the wave loads. The boundary conditions of the gravity-based foundation-monopile-turbine system are mostly affected by the flexural stiffness of the foundation plate, the elastic and creep behavior of the soil, and the inertia (translational and rotational) of the wind turbine mass. The design of the foundation should consider the dynamic response of the soil and the monopile, and the dynamic response of the soil and the monopile is affected by the design parameters of the foundation. The initial conditions of the system yield transient dynamic phenomena. A braking wave at t = 0 causes different dynamic response than the steady-state conditions due to a harmonic wave load. In the present work, an integrated analytical model simulating the above dynamic phenomena is proposed. With the aid of double integral transforms and generalized function properties, a solution of the corresponding differential equations for the monopile-soil-foundation system and the boundary and initial conditions is derived. A parametric study is carried out, and results of the effect of the design parameters and soil properties are presented and discussed.

References

References
1.
Chen
,
L.
,
Zang
,
J.
,
Hillis
,
A.
,
Morgan
,
G.
, and
Plummer
,
A.
,
2014
, “
Numerical Investigation of Wave-Structure Interaction Using Openfoam
,”
Ocean Eng.
,
88
, pp.
91
109
. 10.1016/j.oceaneng.2014.06.003
2.
Ong
,
M. C.
,
Li
,
H.
,
Leira
,
B. J.
, and
Myrhaug
,
D.
,
2013
, “
Dynamic Analysis of Offshore Monopile Wind Turbine Including the Effects of Wind-Wave Loading and Soil Properties
,”
ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering
,
Nantes, France
,
June 9–14
,
American Society of Mechanical Engineers
. Paper No: OMAE2013-10527. https://doi.org/10.1115/OMAE2013-10527
3.
Ulker
,
M.
,
Rahman
,
M.
, and
Guddati
,
M.
,
2010
, “
Wave-Induced Dynamic Response and Instability of Seabed Around Caisson Breakwater
,”
Ocean Eng.
,
37
(
17–18
), pp.
1522
1545
. 10.1016/j.oceaneng.2010.09.004
4.
Xiao-Jun
,
L.
,
Fu-Ping
,
G.
,
Bing
,
Y.
, and
Jun
,
Z.
,
2011
, “
Wave-Induced Pore Pressure Responses and Soil Liquefaction Around Pile Foundation
,”
Int. J. Offshore Polar Eng.
,
21
(
3
), pp.
233
239
.
5.
Zhang
,
C.
,
Zhang
,
Q.
,
Wu
,
Z.
,
Zhang
,
J.
,
Sui
,
T.
, and
Wen
,
Y.
,
2015
, “
Numerical Study on Effects of the Embedded Monopile Foundation on Local Wave-Induced Porous Seabed Response
,”
Math. Probl. Eng.
, pp.
1
13
. 10.1155/2015/184621
6.
Duan
,
L.
,
Jeng
,
D.-S.
, and
Wang
,
D.
,
2019
, “
PORO-FSSI-FOAM: Seabed Response Around a Mono-Pile Under Natural Loading
,”
Ocean Eng.
,
184
, pp.
239
254
. 10.1016/j.oceaneng.2019.05.024
7.
Sui
,
T.
,
Zhang
,
C.
,
Guo
,
Y.
,
Zheng
,
J.
,
Jeng
,
D.-S.
,
Zhang
,
J.
, and
Zhang
,
W.
,
2016
, “
Three-Dimensional Numerical Model for Wave-Induced Seabed Response Around Mono-Pile
,”
Ships Offshore Struct.
,
11
(
6
), pp.
667
678
. 10.1080/17445302.2015.1051312
8.
Luan
,
M.
,
Qu
,
P.
,
Jeng
,
D.-S.
,
Guo
,
Y.
, and
Yang
,
Q.
,
2008
, “
Dynamic Response of a Porous Seabed-Pipeline Interaction Under Wave Loading: Soil-Pipeline Contact Effects and Inertial Effects
,”
Comput. Geotech.
,
35
(
2
), pp.
173
186
. 10.1016/j.compgeo.2007.05.004
9.
Chang
,
K.-T.
, and
Jeng
,
D.-S.
,
2014
, “
Numerical Study for Wave-Induced Seabed Response Around Offshore Wind Turbine Foundation in Donghai Offshore Wind Farm, Shanghai, China
,”
Ocean Eng.
,
85
, pp.
32
43
. 10.1016/j.oceaneng.2014.04.020
10.
Lin
,
Z.
,
Pokrajac
,
D.
,
Guo
,
Y.
,
Jeng
,
D.-S.
,
Tang
,
T.
,
Rey
,
N.
,
Zheng
,
J.
, and
Zhang
,
J.
,
2017
, “
Investigation of Nonlinear Wave-Induced Seabed Response Around Mono-Pile Foundation
,”
Coastal Eng.
,
121
, pp.
197
211
. 10.1016/j.coastaleng.2017.01.002
11.
Li
,
Y.
,
Tang
,
T.
, and
Ong
,
M. C.
,
2017
, “
A 3D Wave-Structure-Seabed Interaction Analysis of a Gravity-Based Wind Turbine Foundation
,”
Proceedings of the ASME 2017 36th Conference on Ocean, Offshore and Arctic Engineering
,
Paper OMAE2017-61640
.
12.
OpenFOAM, The Open Source CFD Toolbox, Open CFD Ltd 2019
, http//:openfoam.com
13.
Biot
,
M. A.
,
1941
, “
General Theory of Three-Dimensional Consolidation
,”
J. Appl. Phys.
,
12
(
2
), pp.
155
164
. 10.1063/1.1712886
14.
Li
,
Y.
,
Ong
,
M. C.
, and
Tang
,
T.
,
2018
, “
Numerical Analysis of Wave-Induced Poro-Elastic Seabed Response Around a Hexagonal Gravity-Based Offshore Foundation
,”
Coastal Eng.
,
136
, pp.
81
95
. 10.1016/j.coastaleng.2018.02.005
15.
Sofonea
,
M.
, and
Matei
,
A.
,
2012
,
Mathematical Models in Contact Mechanics
,
Cambridge University Press
,
Cambridge
.
16.
Pavlou
,
D.
, and
Li
,
Y.
,
2018
, “
Seabed Dynamic Response of Offshore Wind Turbine Foundation Under Vertical Harmonic Loading: An Analytic Solution
,”
Math. Probl. Eng.
, pp.
1
9
. 10.1155/2018/6250158
17.
Li
,
Y.
,
Ong
,
M. C.
, and
Tang
,
T.
,
2020
, “
A Numerical Toolbox for Wave-Induced Seabed Response Analysis Around Marine Structures in the OpenFOAM Framework
,”
Ocean Eng.
,
195
, pp.
1
18
. 10.1016/j.oceaneng.2019.106678
18.
Morison
,
J. R.
,
O’Brien
,
M. P.
,
Johnson
,
J. W.
, and
Schaaf
,
S. A.
,
1950
, “
The Force Exerted by Surface Waves on Piles
,”
Pet. Trans. Am. Inst. Min. Eng.
,
189
, pp.
149
154
. 10.2118/950149-g
19.
Zhang
,
X.
,
Jeng
,
D.-S.
, and
Luan
,
M.
,
2011
, “
Dynamic Response of a Porous Seabed Around Pipeline Under Three-Dimensional Wave Loading
,”
Soil Dyn. Earthquake Eng.
,
31
(
5–6
), pp.
785
791
. 10.1016/j.soildyn.2011.01.002
20.
Behnam
,
S.
, and
Dong-Sheng
,
J.
,
2008
, “
3D Modeling of Wave-Seabed-Pipeline in Marine Environments
,”
Open Civ. Eng. J.
,
2
(
1
), pp.
121
142
. 10.2174/1874149500802010121
21.
Pavlou
,
D.
,
2015
,
Essentials of the Finite Element Method for Mechanical and Structural Engineers
,
Academic Press
,
San Diego, CA
.
22.
Dean
,
R. G.
, and
Dalrymple
,
R. A.
,
1991
,
Water Wave Mechanics for Engineers and Scientists
,
World Scientific
,
Singapore
.
23.
Det Norske Veritas Recommended Practice DNV-PR-C205, 2010, Environmental Conditions and Environmental Loads, DNV-PR-C205
,
October 2010
.
24.
Pavlou
,
D. G.
,
2011
, “
Elastodynamic Analysis of a Thin Layer Bonded on a Visco-Elastic Medium Under Combined In-Plane and Pulse Lateral Loads
,”
Mech. Res. Commun.
,
38
(
8
), pp.
546
552
. 10.1016/j.mechrescom.2011.07.004
25.
Pavlou
,
D. G.
,
Vlachakis
,
N. V.
, and
Pavlou
,
M. G.
,
2005
, “
An Analytical Solution of the Annular Plate on Elastic Foundation
,”
Struct. Eng. Mech.
,
20
(
2
), pp.
209
223
. 10.12989/sem.2005.20.2.209
26.
Sobotka
,
Z.
,
1985
,
Rheology of Materials and Engineering Structures, Rheology Series 2
,
Wiley Interscience Publication
,
Netherlands
.
27.
Nassar
,
M.
,
1981
, “
Bending of a Circular Plate on a Linear Viscoelastic Foundation
,”
Appl. Math. Modell.
,
5
(
1
), pp.
60
62
. 10.1016/0307-904X(81)90062-7
28.
Graff
,
K.
,
1975
,
Wave Motion in Elastic Solids
,
Dover Publications
,
New York
.
29.
Sneddon
,
I. N.
,
1974
,
The Use of Integral Transforms
,
McGraw-Hill
,
New York
.
30.
Prudnikov
,
A. P.
,
Brychkov
,
Y. A.
, and
Marichev
,
O. I.
,
2002
,
Integrals and Series
,
Taylor & Francis
,
London
.
31.
Wolfram Mathematica, The World’s Definitive System for Modern Technical Computing
, https://www.wolfram.com/mathematica/
32.
Cheng
,
A. H.-D.
,
Sidauruk
,
P.
, and
Abousleiman
,
Y.
,
1994
, “
Approximate Inversion of the Laplace Transform
,”
Math. J.
,
4
, pp.
76
82
.
33.
Knight
,
J. H.
, and
Raiche
,
A. P.
,
1982
, “
Transient Electromagnetic Calculations Using Gaver Stehfest Inverse Laplace Transform Method
,”
Geophysics
,
47
(
1
), pp.
47
50
. 10.1190/1.1441280
You do not currently have access to this content.