Abstract

A braceless semi-submersible floating platform is proposed for a Technical University of Denmark (DTU) 10-MW wind turbine at moderate water depths with reference to an existing National Renewable Energy Laboratory (NREL) 5-MW braceless semi-submersible floating platform, and a servo control system for a 10-MW semi-submersible floating offshore wind turbine (FOWT) is introduced. To control the ultimate and fatigue loads of the FOWT, a fore-aft tuned mass damper (TMD) installed in the nacelle of the 10-MW semi-submersible FOWT was investigated for vibration alleviation and load reduction. Considering the hydrodynamic and mooring effect, a four degrees-of-freedom (DOFs) (platform surge and pitch motions, tower fore-aft bending, and TMD translation) simplified dynamic model for the 10-MW semi-submersible FOWT is established based on D’Alembert’s principle. Then, the parameter estimation is conducted based on the Levenberg–Marquardt (LM) algorithm, and the simplified dynamic model was further verified by comparing the output responses with FAST and the proposed model. Furthermore, the exhaustive search (ES) and genetic algorithm (GA) are embedded into the simplified dynamic model to optimize the TMD parameters. Finally, a fully coupled time-domain simulation for all the selected environmental conditions is conducted in FAST, and the vibration suppression performance of the optimized TMD design for the 10-W semi-submersible FOWT was further examined and analyzed.

References

References
1.
Tang
,
Y.
,
Shi
,
W.
,
Ning
,
D.
, and
You
,
J.
,
2020
, “
Effects of Spilling and Plunging Type Breaking Waves Acting on Large Monopile Offshore Wind Turbines
,”
Front. Mar. Sci.
,
7
, p.
427
. 10.3389/fmars.2020.00427
2.
Arapogianni
,
A.
,
Genachte
,
A. B.
,
Ochagavia
,
R. M.
,
Vergara
,
J. P.
,
Castell
,
D.
, and
Tsouroukdissian
,
A. R.
,
2013
,
Deep Water-the Next Step for Offshore Wind Energy
,
European Wind Energy Association (EWEA)
.
3.
Campanile
,
A.
,
Piscopo
,
V.
, and
Scamardella
,
A.
,
2018
, “
Mooring Design and Selection for Floating Offshore Wind Turbines on Intermediate and Deep Water Depths
,”
Ocean Eng.
,
148
, pp.
349
360
. 10.1016/j.oceaneng.2017.11.043
4.
Bak
,
C.
,
Bitsche
,
R.
,
Yde
,
A.
,
Kim
,
T.
,
Hansen
,
M. H.
,
Zahle
,
F.
,
Gaunaa
,
M.
,
Blasques
,
J. P.
,
Døssing
,
M.
,
Heinen
,
J.
, and
Behrens
,
T.
,
2012
, “
Light Rotor: The 10-MW Reference Wind Turbine
,”
Ewea-European Wind Energy Conference & Exhibition
,
Copenhagen, Denmark
,
Apr. 16–19
5.
Zhang
,
L.
,
Shi
,
W.
,
Karimirad
,
M.
,
Michailides
,
C.
, and
Jiang
,
Z.
,
2020
, “
Second-Order Hydrodynamic Effects on the Response of Three Semisubmersible Floating Offshore Wind Turbines
,”
Ocean Eng.
,
207
, p.
107371
. 10.1016/j.oceaneng.2020.107371
6.
Larsen
,
T. J.
, and
Hanson
,
T. D.
,
2007
, “
A Method to Avoid Negative Damped Low Frequent Tower Vibrations for a Floating, Pitch Controlled Wind Turbine
,”
Journal of Physics: Conference Series
, IOP Publishing,
75
(
1
), p.
012073
.
7.
Jonkman
,
J.
,
2008
, “
Influence of Control on the Pitch Damping of a Floating Wind Turbine
,”
Proceedings of 46th AIAA Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
Jan. 7–10
, p.
1306
.
8.
Namik
,
H.
, and
Stol
,
K.
,
2011
, “
Performance Analysis of Individual Blade Pitch Control of Offshore Wind Turbines on Two Floating Platforms
,”
Mechatronics
,
21
(
4
), pp.
691
703
. 10.1016/j.mechatronics.2010.12.003
9.
Lemmer
,
F.
,
Raach
,
S.
,
Schlipf
,
D.
, and
Cheng
,
P.
,
2015
, “
Prospects of Linear Model Predictive Control on a 10 MW Floating Wind Turbine
,”
International Conference on Offshore Mechanics and Arctic Engineering
,
St. John's, Newfoundland, Canada
,
May 31–June 5
,
American Society of Mechanical Engineers
,
New York
, Vol.
56574
,
V009T09A071
.
10.
He
,
J.
,
Jin
,
X.
,
Xie
,
S.
,
Cao
,
L.
,
Lin
,
Y.
, and
Wang
,
N.
,
2019
, “
Multi-body Dynamics Modeling and TMD Optimization Based on the Improved AFSA for Floating Wind Turbines
,”
Renewable Energy
,
141
, pp.
305
321
. 10.1016/j.renene.2019.04.005
11.
Murtagh
,
P. J.
,
Ghosh
,
A.
,
Basu
,
B.
, and
Broderick
,
B. M.
,
2008
, “
Passive Control of Wind Turbine Vibrations Including Blade/Tower Interaction and Rotationally Sampled Turbulence
,”
Wind Energy: Int. J. Prog. Appl. Wind Power Convers. Technol.
,
11
(
4
), pp.
305
317
.
12.
Mensah
,
A. F.
, and
Dueas-Osorio
,
L.
,
2012
, “
Reliability Analysis of Wind Turbines Equipped With Tuned Liquid Column Dampers (TLCD)
,”
Structures Congress
,
Chicago, IL
,
Mar. 29–31
.
13.
Zhang
,
Z. L.
,
Chen
,
J. B.
, and
Li
,
J.
,
2014
, “
Theoretical Study and Experimental Verification of Vibration Control of Offshore Wind Turbines by a Ball Vibration Absorber
,”
Struct. Infrastruct. Eng.
,
10
(
8
), pp.
1087
1100
. 10.1080/15732479.2013.792098
14.
Jonkman
,
J. M.
, and
Buhl Jr
,
M. L.
,
2005
,
FAST User’s Guide
,
National Renewable Energy Laboratory
,
Golden, CO
,
365
, p.
366
.
15.
Lackner
,
M. A.
, and
Rotea
,
M. A.
,
2011
, “
Passive Structural Control of Offshore Wind Turbines
,”
Wind Energy
,
14
(
3
), pp.
373
388
. 10.1002/we.426
16.
Si
,
Y.
,
2015
, “
Structural Control Strategies for Load Reduction of Floating Wind Turbines
,”
Master’s thesis
,
University of Agder
.
17.
Lackner
,
M. A.
, and
Rotea
,
M. A.
,
2011
, “
Structural Control of Floating Wind Turbines
,”
Mechatronics
,
21
(
4
), pp.
704
719
. 10.1016/j.mechatronics.2010.11.007
18.
Si
,
Y.
,
Karimi
,
H. R.
, and
Gao
,
H.
,
2013
, “
Modeling and Parameter Analysis of the OC3-Hywind Floating Wind Turbine With a Tuned Mass Damper in Nacelle
,”
J. Appl. Math.
, pp.
1
10
.
19.
Si
,
Y.
,
Karimi
,
H. R.
, and
Gao
,
H.
,
2014
, “
Modelling and Optimization of a Passive Structural Control Design for a Spar-Type Floating Wind Turbine
,”
Eng. Struct.
,
69
, pp.
168
182
. 10.1016/j.engstruct.2014.03.011
20.
Cao
,
Q.
,
Xiao
,
L.
,
Guo
,
X.
, and
Liu
,
M.
,
2020
, “
Second-Order Responses of a Conceptual Semi-submersible 10 MW Wind Turbine Using Full Quadratic Transfer Functions
,”
Renewable Energy
,
153
.
21.
Borg
,
M.
,
Hansen
,
A. M.
, and
Bredmose
,
H.
,
2016
, “
Floating Substructure Flexibility of Large-Volume 10MW Offshore Wind Turbine Platforms in Dynamic Calculations
,”
J. Phys. Conf. Ser.
,
753
(
8
), p.
082024
. 10.1088/1742-6596/753/8/082024
22.
McKenna
,
R.
,
vd Leye
,
P. O.
, and
Fichtner
,
W.
,
2016
, “
Key Challenges and Prospects for Large Wind Turbines
,”
Renewable Sustainable Energy Rev.
,
53
, pp.
1212
1221
. 10.1016/j.rser.2015.09.080
23.
Hameed
,
Z.
, and
Vatn
,
J.
,
2012
, “
Important Challenges for 10 MW Reference Wind Turbine From RAMS Perspective
,”
Energy Procedia
,
24
, pp.
263
270
. 10.1016/j.egypro.2012.06.108
24.
Di Lorenzo
,
E.
,
Kosova
,
G.
,
Musella
,
U.
,
Manzato
,
S.
,
Peeters
,
B.
,
Marulo
,
F.
, and
Desmet
,
W.
,
2015
, “
Structural Health Monitoring Challenges on the 10-MW Offshore Wind Turbine Model
,”
Journal of Physics: Conference Series
,
IOP Publishing
,
628
(
1
), p.
012081
. 10.1088/1742-6596/628/1/012081
25.
Li
,
C.
,
Zhuang
,
T.
,
Zhou
,
S.
,
Xiao
,
Y.
, and
Hu
,
G.
,
2017
, “
Passive Vibration Control of a Semi-submersible Floating Offshore Wind Turbine
,”
Appl. Sci.
,
7
(
6
), p.
509
. 10.3390/app7060509
26.
Chen
,
L.
,
2018
, “
Design and Analysis for a Steel Braceless Semi-Submersible Hull for Supporting a 5-MW Horizontal Axis Wind Turbine
,”
PhD thesis
,
Norwegian University of Science and Technology
.
27.
Leimeister
,
M.
,
2016
, “
Rational Upscaling and Modelling of a Semi-Submersible Floating Offshore Wind Turbine
,”
Master's thesis
,
Norwegian University of Science and Technology
.
28.
Zhao
,
Z.
,
Li
,
X.
,
Wang
,
W.
, and
Shi
,
W.
,
2019
, “
Analysis of Dynamic Characteristics of an Ultra-large Semi-submersible Floating Wind Turbine
,”
J. Mar. Sci. Eng.
,
7
(
6
), p.
169
. 10.3390/jmse7060169
29.
Jonkman
,
J.
,
Butterfield
,
S.
,
Musial
,
W.
, and
Scott
,
G.
,
2009
,
Definition of a 5-MW Reference Wind Turbine for Offshore System Development
,
National Renewable Energy Lab. (NREL)
,
Golden, CO
.
30.
Karimirad
,
M.
,
2011
, “
Stochastic Dynamic Response Analysis of Spar-Type Wind Turbines with Catenary or Taut Mooring Systems
,”
PhD’s Thesis
,
Norwegian University of Science and Technology
.
31.
Xie
,
S.
,
Jin
,
X.
, and
He
,
J.
,
2019
, “
Structural Vibration Control for the Offshore Floating Wind Turbine Including Drivetrain Dynamics Analysis
,”
J. Renewable Sustainable Energy
,
11
(
2
), p.
023304
. 10.1063/1.5079427
32.
Hansen
,
M. H.
,
Hansen
,
A.
,
Larsen
,
T. J.
,
Фye
,
S.
,
Sørensen
,
P.
, and
Fuglsang
,
P.
,
January 2005
,
Control Design for a Pitch-Regulated, Variable-Speed Wind Turbine, Risø-R-1500(EN)
,
Risø National Laboratory
,
Roskilde, Denmark
.
33.
Karimirad
,
M.
, and
Moan
,
T.
,
2011
, “
Ameliorating the Negative Damping in the Dynamic Responses of a Tension leg Spar-Type Support Structure with a Downwind Turbine
,”
European Wind Energy Conference
,
Brussels, Belgium
.
34.
Stewart
,
G. M.
, and
Lackner
,
M. A.
,
2011
, “
The Effect of Actuator Dynamics on Active Structural Control of Offshore Wind Turbines
,”
Eng. Struct.
,
33
(
5
), pp.
1807
1816
. 10.1016/j.engstruct.2011.02.020
35.
Lanczos
,
C.
,
1986
,
The Variational Principles of Mechanics
,
Dover Publications
.
36.
Ma
,
Y.
,
Hu
,
Z.
, and
Xiao
,
L.
,
2015
, “
Wind-Wave Induced Dynamic Response Analysis for Motions and Mooring Loads of a Spar-Type Offshore Floating Wind Turbine
,”
J. Hydrodyn. Ser. B
,
26
(
6
), pp.
865
874
. 10.1016/S1001-6058(14)60095-0
37.
Ansys, AQWA User Manual,
2011
.
38.
Sarpkaya
,
T.
,
1986
, “
Force on a Circular Cylinder in Viscous Oscillatory Flow at Low Keulegan-Carpenter Numbers
,”
J. Fluid Mech.
,
165
, pp.
61
71
. 10.1017/S0022112086002999
39.
La Cava
,
W.
, and
Lackner
,
M. A.
,
2015
,
Theory Manual for the Tuned Mass Damper Module in Fast v8
,
University of Massachusetts Amherst
,
Amherst, MA
.
40.
Moré
,
J. J.
,
1978
, “The Levenberg-Marquardt Algorithm: Implementation and Theory,”
Numerical Analysis
,
Springer
,
Berlin, Heidelberg
, pp.
105
116
.
41.
Shawash
,
J.
, and
Selviah
,
D. R.
,
2012
, “
Real-Time Nonlinear Parameter Estimation Using the Levenberg–Marquardt Algorithm on Field Programmable Gate Arrays
,”
IEEE Trans. Ind. Electron.
,
60
(
1
), pp.
170
176
. 10.1109/TIE.2012.2183833
42.
Han
,
Y.
,
Le
,
C.
,
Ding
,
H.
,
Cheng
,
Z.
, and
Zhang
,
P.
,
2017
, “
Stability and Dynamic Response Analysis of a Submerged Tension Leg Platform for Offshore Wind Turbines
,”
Ocean Eng.
,
129
, pp.
68
82
. 10.1016/j.oceaneng.2016.10.048
43.
Giuseppe
,
R. T.
,
Alberto
,
M. A.
,
Luigia
,
R.
,
Francesco
,
R.
,
Elena
,
M.
,
Felice
,
D.
, and
Diego
,
V.
,
2017
, “
Dynamic Modelling of a Spar Buoy Wind Turbine
,”
Proceedings of the ASME 36th International Conference on Ocean
,
Trondheim, Norway
,
June 25–30
, pp.
1
10
.
44.
Bak
,
C.
,
Zahle
,
F.
,
Bitsche
,
R.
,
Kim
,
T.
,
Yde
,
A.
,
Henriksen
,
L. C.
,
Natarajan
,
A.
, and
Hansen
,
M. H.
,
2013
, Description of the DTU 10 MW Reference Wind Turbine. DTU Wind Energy Report-I-0092, 5.
45.
Stewart
,
G.
, and
Lackner
,
M.
,
2013
, “
Offshore Wind Turbine Load Reduction Employing Optimal Passive Tuned Mass Damping Systems
,”
IEEE Trans. Control Syst. Technol.
,
21
(
4
), pp.
1090
1104
. 10.1109/TCST.2013.2260825
46.
Colwell
,
S.
, and
Basu
,
B.
,
2009
, “
Tuned Liquid Column Dampers in Offshore Wind Turbines for Structural Control
,”
Eng. Struct.
,
31
(
2
), pp.
358
368
. 10.1016/j.engstruct.2008.09.001
47.
Gao
,
H.
,
Kwok
,
K. C. S.
, and
Samali
,
B.
,
1997
, “
Optimization of Tuned Liquid Column Dampers
,”
Eng. Struct.
,
19
(
6
), pp.
476
486
. 10.1016/S0141-0296(96)00099-5
48.
Chipperfield
,
A. J.
, and
Fleming
,
P. J.
,
1995
,
The MATLAB Genetic Algorithm Toolbox
,
IEE Colloquium on Applied Control Techniques Using MATLAB
,
London, UK
,
Jan. 26
.
49.
IEC 61400-3
,
2009
,
International Electrotechnical Commission Standard on Wind Turbines, Part 3: Design Requirements for Offshore
,
Wind Turbines Garrad Hassan & Partners Ltd
.
50.
Jonkman
,
B. J.
,
2009
,
TurbSim User's Guide: Version 1.50
,
National Renewable Energy Lab.(NREL)
,
Golden, CO (United States)
.
51.
Hayman
,
G.
,
2012
,
MLife Theory Manual for Version 1.00
,
National Renewable Energy Laboratory
,
Golden, CO
,
74
(
75
), p.
106
.
You do not currently have access to this content.