Abstract

Flow-induced oscillations/vibrations (FIO/V) of cylinders in tandem can be enhanced by proper in-flow spacing to increase hydrokinetic energy harnessing. In a farm of multiple cylinders in tandem, the effect of interference on harnessing efficiency arises. Three years of systematic experiments in the Marine Renewable Laboratory (MRELab) of the University of Michigan, on an isolated cylinder, and two and three cylinders in tandem have revealed that synergistic FIO can enhance oscillations of cylinders in close proximity. Two cylinders in tandem can harness 2.5–13.5 times the hydrokinetic power of one isolated cylinder. Three cylinders in tandem can harness 3.4–26.4 times the hydrokinetic power of one isolated cylinder. Negative impact on the harnessed energy by multiple cylinders, such as the shielding effect for the downstream cylinder/s, is possible. Specifically for the three-cylinder configuration, at a certain flow speed, the decrease in the power of the middle cylinder can be overcome by adjusting its stiffness and/or damping.

References

References
1.
Bernitsas
,
M. M.
, and
Raghavan
,
K.
,
2009
, “
Converter of Current, Tide, or Wave Energy
,” US Patent and Trademark Office, Patent No. 7,493,759 B2, Feb. 24.
2.
Bernitsas
,
M. M.
, and
Raghavan
,
K.
,
2011
, “
Enhancement of Vortex Induced Forces & Motion Through Surface Roughness Control
,” US Patent and Trademark Office, Patent No. 8,047,232 B2, Nov. 1.
3.
Bernitsas
,
M. M.
,
2016
, “Harvesting Energy by Flow Included Motions”,
Chapter 47, Springer Handbook of Ocean Engineering
,
M. R.
Dhanak
and
N. I.
Xiros
, eds.,
Springer-Verlag
,
Berlin/Heidelberg
.
4.
Lacey
,
R. W. J.
,
Neary
,
V. S.
,
Liao
,
J. C.
,
Enders
,
E. C.
, and
Tritico
,
H. M.
,
2011
, “
The Ipos Framework: Linking Fish Swimming Performance in Altered Flows From Laboratory Experiments to Rivers
,”
River Res. Appl.
,
28
(
4
), pp.
429
443
. 10.1002/rra.1584
5.
Sun
,
H.
,
Kim
,
E. S.
,
Nowakowski
,
G.
,
Mauer
,
E.
, and
Bernitsas
,
M. M.
,
2016
, “
Effect of Mass-Ratio, Damping, and Stiffness on Optimal Hydrokinetic Energy Conversion of a Single, Rough Cylinder in Flow Induced Motions
,”
Renewable Energy
,
99
, pp.
936
959
. 10.1016/j.renene.2016.07.024
6.
Ding
,
L.
,
Zhang
,
L.
,
Kim
,
E. S.
, and
Bernitsas
,
M. M.
,
2015
, “
URANS vs. Experiments of Flow Induced Motions of Multiple Circular Cylinders With Passive Turbulence Control
,”
J. Fluids Struct.
,
54
, pp.
612
628
. 10.1016/j.jfluidstructs.2015.01.003
7.
Kim
,
E. S.
, and
Bernitsas
,
M. M.
,
2016
, “
Performance Prediction of Horizontal Hydrokinetic Energy Converter Using Multiple-Cylinder Synergy in Flow Induced Motion
,”
Appl. Energy
,
170
, pp.
92
100
. 10.1016/j.apenergy.2016.02.116
8.
Sun
,
H.
,
Kim
,
E. S.
,
Bernitsas
,
M. P.
, and
Bernitsas
,
M. M.
,
2015
, “
Virtual Spring–Damping System for Flow-Induced Motion Experiments
,”
ASME J. Offshore Mech. Arct. Eng.
,
137
(
6
), p.
061801
. 10.1115/1.4031327
9.
Sun
,
H.
,
Ma
,
C.
,
Kim
,
E. S.
,
Nowakowski
,
G.
,
Mauer
,
E.
, and
Bernitsas
,
M. M.
,
2017
, “
Hydrokinetic Energy Conversion by Two Rough Tandem-Cylinders in Flow Induced Motions: Effect of Spacing and Stiffness
,”
Renewable Energy
,
107
, pp.
61
80
. 10.1016/j.renene.2017.01.043
10.
Zdravkovich
,
M. M.
,
1997
,
Flow Around Circular Cylinders
, Vol.
1
,
E.
Achenbach
, ed.,
Oxford University Press
,
Oxford, UK
.
11.
Zhang
,
L. B.
,
Dai
,
H. L.
,
Abdelkefi
,
A.
, and
Wang
,
L.
,
2019
, “
Experimental Investigation of Aerodynamic Energy Harvester With Different Interference Cylinder Cross-Sections
,”
Energy
,
167
, pp.
970
981
. 10.1016/j.energy.2018.11.059
12.
Zhao
,
M.
,
2013
, “
Flow Induced Vibration of two Rigidly Coupled Circular Cylinders in Tandem and Side-by-Side Arrangements at a Low Reynolds Number of 150
,”
Phys. Fluids
,
25
(
12
), p.
123601
. 10.1063/1.4832956
13.
Zhao
,
M.
,
Kaja
,
K.
,
Xiang
,
Y.
, and
Cheng
,
L.
,
2016
, “
Vortex-Induced Vibration of Four Cylinders in an In-Line Square Configuration
,”
Phys. Fluids
,
28
(
2
), p.
023602
. 10.1063/1.4941774
14.
Wolfgang
,
M. J.
,
Anderson
,
J. M.
,
Grosenbaugh
,
M. A.
,
Yue
,
D. K.
, and
Triantafyllou
,
M. S.
,
1999
, “
Near-Body Flow Dynamics in Swimming Fish
,”
J. Exp. Biol.
,
202
(
17
), pp.
2303
2327
.
15.
Han
,
Z.
,
Zhou
,
D.
,
He
,
T.
,
Tu
,
J.
,
Li
,
C.
,
Kwok
,
K. C.
, and
Fang
,
C.
,
2015
, “
Flow-Induced Vibrations of Four Circular Cylinders With Square Arrangement at Low Reynolds Numbers
,”
Ocean Eng.
,
96
, pp.
21
33
. 10.1016/j.oceaneng.2014.12.002
16.
Gao
,
Y.
,
Yang
,
K.
,
Zhang
,
B.
,
Cheng
,
K.
, and
Chen
,
X.
,
2019
, “
Numerical Investigation on Vortex-Induced Vibrations of Four Circular Cylinders in a Square Configuration
,”
Ocean Eng.
,
175
, pp.
223
240
. 10.1016/j.oceaneng.2019.02.012
17.
Park
,
H. R.
,
Bernitsas
,
M. M.
, and
Chang
,
C. C.
,
2013
, “
Robustness of the map of Passive Turbulence Control to Flow-Induced Motions for a Circular Cylinder at 30,000 < Re < 120,000
,”
Proceedings of 31st OMAE 2013 Conference
,
Nantes, France
,
June
.
18.
Park
,
H.
,
Kumar
,
R. A.
, and
Bernitsas
,
M. M.
,
2013
, “
Enhancement of Flow-Induced Motion of Rigid Circular Cylinder on Springs by Localized Surface Roughness at 3 × 104 ≤ Re ≤ 1.2 × 105
,”
Ocean Eng.
,
72
, pp.
403
415
. 10.1016/j.oceaneng.2013.06.026
19.
Lee
,
J. H.
,
Xiros
,
N.
, and
Bernitsas
,
M. M.
,
2011
, “
. “Virtual Damper–Spring System for VIV Experiments and Hydrokinetic Energy Conversion
,”
Ocean Eng.
,
38
(
5–6
), pp.
732
747
. 10.1016/j.oceaneng.2010.12.014
20.
Bernitsas
,
M. M.
,
Ben-Simon
,
Y.
,
Raghavan
,
K.
, and
Garcia
,
E. M. H.
,
2009
, “
The VIVACE Converter: Model Tests at High Damping and Reynolds Number Around 105
,”
ASME J. Offshore Mech. Arct. Eng.
,
131
(
1
), p.
011102
. 10.1115/1.2979796
21.
Blevins
,
R. D.
,
1990
,
Flow-Induced Vibration
, 2nd ed.,
Van Nostrand Reinhold
,
New York
.
22.
Foulhoux
,
L.
, and
Bernitsas
,
M. M.
,
1993
, “
Forces and Moments on a Small Body Moving in a 3D Unsteady Flow (With Applications to Slender Structures)
,”
ASME J. Offshore Mech. Arct. Eng.
,
115
(
2
), pp.
91
104
. 10.1115/1.2920105
23.
Morison
,
J. R.
,
Johnson
,
J. W.
, and
Schaaf
,
S. A.
,
1950
, “
The Force Exerted by Surface Waves on Piles
,”
J. Pet. Technol.
,
2
(
5
), pp.
149
154
. 10.2118/950149-G
24.
Bernitsas
,
M. M.
,
Ofuegbe
,
J.
,
Chen
,
J. U.
, and
Sun
,
H.
,
2019
, “
Eigen-Solution for Flow Induced Oscillations (VIV and Galloping) Revealed at the Fluid-Structure Interface
,”
ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering
,
Glasgow, Scotland, UK
,
June 9–14
.
25.
Sun
,
H.
,
Ma
,
C.
,
Kim
,
E. S.
,
Nowakowski
,
G.
,
Mauer
,
E.
, and
Bernitsas
,
M. M.
,
2019
, “
Flow-Induced Vibration of Tandem Circular Cylinders With Selective Roughness: Effect of Spacing, Damping and Stiffness
,”
Eur. J. Mech. B. Fluids
,
74
, pp.
219
241
. 10.1016/j.euromechflu.2018.10.024
26.
Sun
,
H.
,
Bernitsas
,
M. M.
, and
Turkol
,
M.
,
2020
, “
Adaptive Harnessing Damping in Hydrokinetic Energy Conversion by Two Rough Tandem-Cylinders Using Flow-Induced Vibrations
,”
Renewable Energy
,
149
, pp.
828
860
. 10.1016/j.renene.2019.12.076
27.
Ma
,
C.
,
Sun
,
H.
,
Nowakowski
,
G.
,
Mauer
,
E.
, and
Bernitsas
,
M. M.
,
2016
, “
Nonlinear Piecewise Restoring Force in Hydrokinetic Power Conversion Using Flow Induced Motions of Single Cylinder
,”
Ocean Eng.
,
128
, pp.
1
12
. 10.1016/j.oceaneng.2016.10.020
28.
Ma
,
C.
,
Sun
,
H.
, and
Bernitsas
,
M. M.
,
2018
, “
Nonlinear Piecewise Restoring Force in Hydrokinetic Power Conversion Using Flow-Induced Vibrations of Two Tandem Cylinders
,”
ASME J. Offshore Mech. Arct. Eng.
,
140
(
4
), p.
041901
. 10.1115/1.4038584
29.
H.
Sun
,
C.
Ma
, and
M.M.
Bernitsas
,
2018
. “
Hydrokinetic Power Conversion Using Flow Induced Vibrations With Nonlinear (Adaptive Piecewise-Linear) Springs
”.
Energy
,
143
, pp.
1085
1106
. 10.1016/j.energy.2017.10.140
You do not currently have access to this content.