Abstract

This paper presents a state-of-the-art digital twin of a hydraulic actuated winch that is used for heave compensation in offshore applications. The digital twin is used as part of a larger simulation model that involves all necessary components to perform lift planning and, subsequently, determine the corresponding weather window. The winch simulation model is described and verified by means of full-scale measurements. In addition, a set of acceptance criteria are presented that should be used whenever verifying digital twins of heave compensating winches that are to be used for lift planning.

References

References
1.
Matland
,
A. E.
,
2014
, “
Simulation of Marine Lifting Operations with Focus on Structural Response Control Arild Eriksen Matland
,” Master Thesis,
Norwegian University of Science and Technology
,
Trondheim
.
2.
You
,
D.
,
Sun
,
L.
,
Qu
,
Z.
, and
Wang
,
T.
,
2013
, “
Roll Motion Analysis of Deepwater Pipelay Crane Vessel
,”
J. Marine Sci. Appl.
,
12
(
4
), pp.
459
462
. 10.1007/s11804-013-1217-7
3.
Moslått
,
G.-A.
,
Padovani
,
D.
, and
Hansen
,
M. R.
,
2019
, “
A Control Algorithm for Active/Passive Hydraulic Winches Used in Active Heave Compensation
,”
ASME/BATH 2019 Symposium on Fluid Power and Motion Control
,
Sarasota, FL
,
American Society of Mechanical Engineers
, p.
11
.
4.
Moslått
,
G.-A.
,
Hansen
,
M. R.
, and
Padovani
,
D.
,
2020
, “
Performance Improvement of a Hydraulic Active/Passive Heave Compensation Winch Using Semi Secondary Motor Control: Experimental and Numerical Verification
,”
Energies 2020
,
13
(
10
), p.
2671
. 10.3390/en13102671
5.
Zhang
,
C.
,
Qian
,
Y.
,
Dui
,
H.
,
Wang
,
S.
, and
Shi
,
J.
,
2020
, “
Component Failure Recognition and Maintenance Optimization for Offshore Heave Compensation Systems Based on Importance Measures
,”
J. Loss Prev. Process Ind.
,
63
(
October 2019
), p.
103996
. 10.1016/j.jlp.2019.103996
6.
Committee
,
T. S.
,
Board
,
T. P.
, and
Board
,
T. P.
,
2015
,
DNVGL-ST-N001 Marine Operations and Marine Warranty
.
7.
Nordås
,
S.
,
Ebbesen
,
M. K.
, and
Andersen
,
T. O.
,
2020
, “
Definition of Performance Requirements and Test Cases for Offshore/subsea Winch Drive Systems with Digital Hydraulic Motors
,”
ASME/BATH 2019 Symposium on Fluid Power and Motion Control, FPMC 2019
,
Sarasota, FL
.
8.
Vartdal
,
J. T.
,
2017
, “
An Investigation of Offshore Wind Installation Strategies Johanne Tomine Vartdal
,” Master Thesis,
Norwegian University of Science and Technology
,
Trondheim
.
9.
Eshkenazi
,
A.
,
2018
,
Real Benefits from Digital Twins
.
10.
I-Scoop
,
2017
.
Digital Twin Technology and Simulation: Benefits, Usage and Predictions 2018
.
11.
Moi
,
T.
,
Cibicik
,
A.
, and
Rølvåg
,
T.
,
2020
, “
Digital Twin Based Condition Monitoring of a Knuckle Boom Crane: An Experimental Study
,”
Eng. Failure Anal.
,
112
, p.
104517
. 10.1016/j.engfailanal.2020.104517
12.
Tao
,
F.
,
Cheng
,
J.
,
Qi
,
Q.
,
Zhang
,
M.
,
Zhang
,
H.
, and
Sui
,
F.
,
2018
, “
Digital Twin-driven Product Design, Manufacturing and Service With Big Data
,”
Int. J. Adv. Manuf. Technol.
,
94
(
9–12
), pp.
3563
3576
. 10.1007/s00170-017-0233-1
13.
Madni
,
A.
,
Madni
,
C.
, and
Lucero
,
S.
,
2019
, “
Leveraging Digital Twin Technology in Model-Based Systems Engineering
,”
Systems
,
7
(
1
), p.
7
. 10.3390/systems7010007
14.
Stark
,
R.
, and
Damerau
,
T.
,
2019
, “Digital Twin,”
CIRP Encyclopedia of Production Engineering
,
S.
Chatti
and
T.
Tolio
, eds.,
Springer Berlin/Heidelberg
, pp.
1
8
.
15.
Jones
,
D.
,
Snider
,
C.
,
Nassehi
,
A.
,
Yon
,
J.
, and
Hicks
,
B.
,
2020
, “
Characterising the Digital Twin: A Systematic Literature Review
,”
CIRP. J. Manuf. Sci. Technol.
,
1
(
2019
), pp.
36
52
. 10.1016/j.cirpj.2020.02.002
16.
Eriksson
,
K.
,
Fjøsna
,
E.
,
Ruså
,
R.
, and
Myrseth
,
P.
,
2020
,
Digital Twins – Are They Valuable? Can you Trust Them?
17.
Chu
,
Y.
,
Hatledal
,
L. I.
,
Zhang
,
H.
,
Æsøy
,
V.
, and
Ehlers
,
S.
,
2018
, “
Virtual Prototyping for Maritime Crane Design and Operations
,”
J. Marine Sci. Technology (Japan)
,
23
(
4
), pp.
754
766
. 10.1007/s00773-017-0509-z
18.
Skjong
,
S.
,
Kyllingstad
,
L. T.
,
Reite
,
K. J.
,
Haugen
,
J.
,
Ladstein
,
J.
, and
Aarsæther
,
K. G.
,
2019
, “
Generic on-board Decision Support System Framework for Marine Operations
,”
Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering
,
Glasgow, Scotland
,
June
,
ASME
.
19.
Moslått
,
G.-A.
, and
Hansen
,
M. R.
,
2018
, “
Modeling of Friction Losses in Offshore Knuckle Boom Crane Winch System
,”
2018 Global Fluid Power Society PhD Symposium, GFPS 2018
,
Samara, Russia
,
IEEE
, pp.
1
7
.
20.
Moslått
,
G.-A.
,
Hansen
,
M. R.
, and
Karlsen
,
N. S.
,
2018
, “
A Model for Torque Losses in Variable Displacement Axial Piston Motors
,”
Model., Identif. Control
,
39
(
2
), pp.
107
114
. 10.4173/mic.2018.2.5
21.
Wu
,
K.
,
Zhang
,
Q.
, and
Hansen
,
A.
,
2004
, “
Modelling and Identification of a Hydrostatic Transmission Hardware-in-the-loop Simulator
,”
Int. J. Vehicle Design
,
34
(
1
), pp.
52
64
. 10.1504/IJVD.2004.003894
22.
Grabbel
,
J.
, and
Ivantysynova
,
M.
,
2005
, “
An Investigation of Swash Plate Control Concepts for Displacement Controlled Actuators
,”
Int. J. Fluid Power
,
6
(
2
), pp.
19
36
. 10.1080/14399776.2005.10781217
23.
Nachtwey
,
P.
,
2019
, “
Hydraulic Capacitance and Dead Time
,”
Hydraulics & Pneaumatics
,
6
(
2
), pp.
1
7
.
24.
Hydromatik
,
B.
, and
Bosch Rexroth
,
A. G.
,
2000
,
Testreport 1229 A4VSG355DS
.
25.
Efficiency
,
T.
,
Wirkungsgrad
,
V.
, and
Wirkungsgrad
,
M.-h.
,
2003
,
Sales Information Variable Displacement Motor A6VM Series 63
.
You do not currently have access to this content.