Abstract

In this present work, effects of three Euler angles (angle of attack (AOA), angle of trim (AOT), and angle of pitch (AOP)) of vertical cambered otter board on hydrodynamic characteristics (drag coefficient (Cd), lift coefficient (Cl), center-of-pressure coefficients (Cp)) were studied based on numerical simulation combined with Kriging response surface methodology (KRSM) and multi-objective genetic algorithm (MOGA). Wind tunnel experiments were carried out to validate the accuracy of the response surface based on numerical simulation. It was demonstrated that AOA had noticeable effects on Cd and Cl, while AOT and AOP had fewer effects. The working posture of the otter board was recommended to lean inward (0 deg–6 deg) and forward (−10 deg–0 deg) to improve the lift-drag ratio without sacrificing Cl. The influences of AOT and AOP on positions of center-of-pressure points were less significant than that of AOA and decreasing with the increase of AOA. Besides, the response surface of hydrodynamic coefficients around the critical AOA was a decent indicator of the occurrence of stall. Finally, three candidate cases were selected to satisfy the high working efficiency by MOGA, which was consistent with the above recommendations. This study provided a scientific reference of response surface experimental investigations methodology in the fishery engineering and the configuration of Euler angles of otter board.

References

References
1.
Sterling
,
D.
,
2000
,
The Physical Performance of Prawn Trawling Otter Boards and Low Opening Systems/by D. Sterling in Collaboration with the Australian Maritime Engineering CRC
,
The Gap
,
Qld, Brisbane
.
2.
Patterson
,
R. N.
, and
Watts
,
K. C.
,
1986
, “
The Otter Board as a Low-Aspect-Ratio Wing at High Angles of Attack; An Experimental Study
,”
Fish. Res.
,
4
(
2
), pp.
111
130
. 10.1016/0165-7836(86)90037-8
3.
Fukuda
,
K.
,
Hu
,
F. X.
,
Tokai
,
T.
, and
Matuda
,
K.
,
1999
, “
Effects of Aspect and Camber Ratios on Hydrodynamic Characteristics of Biplane-Type Otter Board
,”
Nippon Suisan Gakkaishi
,
65
(
5
), pp.
860
865
. 10.2331/suisan.65.860
4.
Xu
,
Q. C.
,
Huang
,
L. Y.
,
Zhao
,
F. F.
,
Wang
,
X. X.
,
Tang
,
Y. L.
,
Liang
,
Z. L.
,
Wan
,
R.
,
Sun
,
P.
,
Liu
,
C. D.
,
Cheng
,
H.
, and
Zhao
,
Y. P.
,
2017
, “
Effects of Aspect Ratio on the Hydrodynamic Performance of Full-Scale Rectangular Otter Board: Numerical Simulation Study
,”
Ocean Eng.
,
142
, pp.
338
347
. 10.1016/j.oceaneng.2017.07.007
5.
Park
,
C. D.
,
Matuda
,
K.
, and
Hu
,
F. X.
,
1996
, “
Effects of Dihedral and Sweepback Angles on Lift and Drag of the Cambered Otter Board
,”
Nippon Suisan Gakkaishi
,
62
(
6
), pp.
920
927
. 10.2331/suisan.62.920
6.
Park
,
C. D.
,
Matuda
,
K.
, and
Tokai
,
T.
,
1994
, “
Flow Visualization Around Cambered Plates Using Hydrogen Bubbles
,”
Nippon Suisan Gakkaishi
,
60
(
4
), pp.
485
491
. 10.2331/suisan.60.485
7.
Wang
,
M.
,
Wang
,
J.
,
Zhang
,
X.
,
Yu
,
Y.
, and
Xu
,
B.
,
2004
, “
Hydrodynamic Characteristics of Vertical V Type Otter Board
,”
J. Fish. China
,
28
(
3
), pp.
311
315
.
8.
Shen
,
X.
,
Hu
,
F.
,
Kumazawa
,
T.
,
Shiode
,
D.
, and
Tokai
,
T.
,
2015
, “
Hydrodynamic Characteristics of a Hyper-Lift Otter Board With Wing-End Plates
,”
Fish. Sci.
,
81
(
3
), pp.
433
442
. 10.1007/s12562-015-0873-8
9.
Lin
,
J.
,
Sato
,
O.
,
Nashimoto
,
K.
, and
Yamamoto
,
K.
,
1989
, “
Efficiency and Stability of Saucer-Shaped Otter Boards With Changing Attack Angle and Heel Angle
,”
Nippon Suisan Gakkaishi
,
55
(
2
), pp.
295
300
. 10.2331/suisan.55.295
10.
Liu
,
J.
,
Huang
,
H.
,
Chen
,
S.
,
Li
,
L.
,
Wu
,
Y.
,
Xu
,
G.
, and
Rao
,
X.
,
2013
, “
Hydrodynamic Characteristics of Low Aspect Ratio Vertical Cambered Otter Board
,”
J. Fish. China
,
37
(
11
), pp.
1742
1749
. 10.3724/SP.J.1231.2013.38768
11.
Bucher
,
C. G.
, and
Bourgund
,
U.
,
1990
, “
A Fast and Efficient Response Surface Approach for Structural Reliability Problems
,”
Struct. Saf.
,
7
(
1
), pp.
57
66
. 10.1016/0167-4730(90)90012-E
12.
Wang
,
G. R.
,
Chu
,
F.
,
Tao
,
S. y.
,
Jiang
,
L.
, and
Zhu
,
H.
,
2015
, “
Optimization Design for Throttle Valve of Managed Pressure Drilling Based on CFD Erosion Simulation and Response Surface Methodology
,”
Wear
,
338–339
, pp.
114
121
. 10.1016/j.wear.2015.06.001
13.
Wang
,
H.
,
Geng
,
H.
,
Guo
,
J.
, and
Li
,
C.
,
2014
, “
The Distinction of Orthogonal Design and Response Surface Methodology Used to Distillation System
,”
J. Heibei Univ. Technol.
,
43
(
1
), pp.
2
6
.
14.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
. 10.1109/4235.996017
15.
Wang
,
G.
,
Wan
,
R.
,
Wang
,
X. X.
,
Zhao
,
F. F.
,
Lan
,
X. Z.
,
Cheng
,
H.
,
Tang
,
W. Y.
, and
Guan
,
Q. L.
,
2018
, “
Study on the Influence of Cut-Opening Ratio, Cut-Opening Shape, and Cut-Opening Number on the Flow Field of a Cubic Artificial Reef
,”
Ocean Eng.
,
162
, pp.
341
352
. 10.1016/j.oceaneng.2018.05.007
16.
Filippini
,
G.
,
Maliska
,
C. R.
, and
Vaz
,
M.
,
2014
, “
A Physical Perspective of the Element-Based Finite Volume Method and FEM-Galerkin Methods Within the Framework of the Space of Finite Elements
,”
Int. J. Numer. Methods Eng.
,
98
(
1
), pp.
24
43
. 10.1002/nme.4618
17.
Mellibovsky
,
F.
,
Prat
,
J.
,
Notti
,
E.
, and
Sala
,
A.
,
2015
, “
Testing Otter Board Hydrodynamic Performances in Wind Tunnel Facilities
,”
Ocean Eng.
,
104
, pp.
52
62
. 10.1016/j.oceaneng.2015.04.064
18.
Selukar
,
R. S.
,
Shah
,
A. K.
, and
Mishra
,
S. N.
,
1995
, “
Efficiency Comparisons of Central Composite Designs
,”
J. Stat. Comput. Simul.
,
52
(
2
), pp.
177
183
. 10.1080/00949659508811663
19.
Lundstedt
,
T.
,
Seifert
,
E.
,
Abramo
,
L.
,
Thelin
,
B.
,
Nyström
,
Å
,
Pettersen
,
J.
, and
Bergman
,
R.
,
1998
, “
Experimental Design and Optimization
,”
Chemom. Intell. Lab. Syst.
,
42
(
1–2
), pp.
3
40
. 10.1016/S0169-7439(98)00065-3
20.
Cui
,
J.
,
1987
,
Fishing Gear and Fishing Science
,
China Agriculture Press
,
Beijing
.
21.
Gano
,
S. E.
,
Renaud
,
J. E.
,
Martin
,
J. D.
, and
Simpson
,
T. W.
,
2006
, “
Update Strategies for Kriging Models Used in Variable Fidelity Optimization
,”
Struct. Multidiscip. Optim.
,
32
(
4
), pp.
287
298
. 10.1007/s00158-006-0025-y
22.
Sacks
,
J.
,
Welch
,
W. J.
,
Mitchell
,
T. J.
, and
Wynn
,
H. P.
,
1989
, “
Design and Analysis of Computer Experiments
,”
Stat. Sci.
,
4
(
4
), pp.
409
423
. 10.1214/ss/1177012413
23.
Murata
,
T.
, and
Ishibuchi
,
H.
,
1995
, “
MOGA: Multi-Objective Genetic Algorithms
,”
Proceedings of the IEEE Conference on Evolutionary Computation
, pp.
289
294
.
24.
Pawar
,
S. N.
, and
Bichkar
,
R. S.
,
2015
, “
Genetic Algorithm With Variable Length Chromosomes for Network Intrusion Detection
,”
Int. J. Autom. Comput.
,
12
(
3
), pp.
337
342
. 10.1007/s11633-014-0870-x
25.
García-Martínez
,
C.
,
Rodriguez
,
F. J.
, and
Lozano
,
M.
,
2018
, “
Genetic Algorithms
,”
Handbook of Heuristics
,
Springer
,
Cham
.
26.
Zhang
,
J.
, and
Xing
,
L.
,
2017
, “
A Survey of Multi Objective Evolutionary Algorithms
,”
IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC)
,
Guangzhou, China
,
July 21–24
, pp.
93
100
. http://dx.doi.org/10.1109/CSE-EUC.2017
27.
Raquel
,
C. R.
, and
Naval
,
P. C.
,
2005
, “
An Effective Use of Crowding Distance in Multiobjective Particle Swarm Optimization
,”
GECCO 2005—Genetic and Evolutionary Computation Conference
,
New York, NY
, pp.
257
264
.
28.
Takahashi
,
Y.
,
Fujimori
,
Y.
,
Hu
,
F.
,
Shen
,
X.
, and
Kimura
,
N.
,
2015
, “
Design of Trawl Otter Boards Using Computational Fluid Dynamics
,”
Fish. Res.
,
161
, pp.
400
407
. 10.1016/j.fishres.2014.08.011
29.
Cebeci
,
T.
, and
Cousteix
,
J.
,
2005
,
Modeling and Computation of Boundary-Layer Flows
,
Springer
,
New York
.
You do not currently have access to this content.