Abstract

With more recent discoveries of oil and gas reserves in the deep ocean locations like Guyana and Ghana, floating vessels such as floating production storage and offloading (FPSO) and floating liquified natural gas (FLNG) are in high demand. Good seakeeping characteristics of floating vessels are relevant because they are expected to be in operation all year round regardless of the weather conditions they may encounter. One phenomenon that affects the motion responses of floating vessels in severe weather conditions is sloshing in the cargo tanks. Vessel wave responses and sloshing may, individually and combined, cause damaging and dangerous motions. The availability of fast and accurate techniques for predicting and analyzing the motions and tank behavior in extreme weather conditions plays a significant role in the design and operations of floating vessels. Over the years, investigations have been carried out on the hydrodynamics of vessel motions, sloshing as a separate phenomenon as well as coupled vessel motions with sloshing analysis. This study reviews the existing techniques that are applicable for analyzing coupled vessel motions and sloshing in the tanks of floating vessels moored offshore. The pros and cons of each technique have been discussed, with the aim to help future researchers and engineers select the most appropriate method for design and analysis. This paper also identifies methods that are yet to be fully applied for coupled seakeeping—sloshing analysis.

References

References
1.
Feder
,
J.
,
2019
, “
Offshore: Making a Comeback After the Downturn
,”
J. Pet. Technol.
,
71
(
5
), pp.
27
31
. 10.2118/0519-0027-JPT
2.
Aronsson
,
E.
,
2012
, “
FLNG Compared to LNG Carriers Requirements and Recommendations of LNG Production Facilities and Re-Gas Units
.”
3.
Cepowski
,
T.
,
2011
, “
Modelling of Seakeeping Ability of FPSO Vessels
,”
Sci. J. Maritime University Szczecin
,
25
(
97
), pp.
13
20
.
4.
Igbadumhe
,
J.
,
Fürth
,
M.
,
Tay
,
Z. Y.
, and
Windén
,
B.
,
2018
, “
Downtime Analysis of FPSO
,”
Proceedings of the 13th International Marine Design Conference, Volume 2
,
Helsinki, Finland
,
June 10–14
, pp.
1121
1129
.
5.
Kim
,
Y.
,
Kim
,
K. H.
,
Kim
,
J. H.
,
Kim
,
T.
,
Seo
,
M. G.
, and
Kim
,
Y.
,
2011
, “
Time-Domain Analysis of Nonlinear Motion Responses and Structural Loads on Ships and Offshore Structures: Development of WISH Programs
,”
Int. J. Nav. Archit. Ocean Eng.
,
3
(
1
), pp.
37
52
. 10.2478/IJNAOE-2013-0044
6.
Arai
,
M.
,
Cheng
,
L. Y.
,
Inoue
,
Y.
,
Sasaki
,
H.
, and
Yamagishi
,
N.
,
1992
, “
Numerical Analysis of Liquid Sloshing in Tanks of FPSO
,”
2nd International Offshore and Polar Engineering Conference
,
San Francisco, CA
,
June 14–19
, pp.
383
390
.
7.
Zhuang
,
Y.
, and
Wan
,
D.
,
2017
, “
Numerical Study on Ship Motion Fully Coupled With LNG Tank Sloshing in CFD Method
,”
Int. J. Comput. Methods
,
16
(
6
), p.
1840022
. 10.1142/S0219876218400224
8.
Kawahashi
,
T.
,
Arai
,
M.
,
Wang
,
X.
,
Cheng
,
L. Y.
,
Nishimoto
,
K.
, and
Nakashima
,
A.
,
2019
, “
A Study on the Coupling Effect Between Sloshing and Motion of FLNG With Partially Filled Tanks
,”
J. Mar. Sci. Technol.
,
24
(
3
), pp.
917
929
. 10.1007/s00773-018-0596-5
9.
Wu
,
L.
,
Yang
,
Y.
,
Maheshwari
,
M.
, and
Li
,
N.
,
2019
, “
Parameter Optimization for FPSO Design Using an Improved FOA and IFOA-BP Neural Network
,”
Ocean Eng.
,
175
, pp.
50
61
. 10.1016/j.oceaneng.2019.02.018
10.
Det Norsek
Veritas
,
2010
,
Global Performance Analysis of Deepwater Floating Structures—Recommended Practice DNV-RP-F205
,
Oslo, Norway
.
11.
Ohyama
,
T.
, and
Hsu
,
J. R. C.
,
1995
, “
Nonlinear Wave Effect on the Slow Drift Motion of a Floating Body
,”
Appl. Ocean Res.
,
17
(
6
), pp.
349
362
. 10.1016/S0141-1187(96)00005-3
12.
2002, UKOOA FPSO Design Guidance Notes for UKCS Service, https://www.ukooa.co.uk/issues/fpso/index.htm, Accessed 15 August 2019.
13.
Nishimoto
,
K.
,
Fucatu
,
C. H.
, and
Masetti
,
I. Q.
,
2002
, “
Dynasim—A Time Domain Simulator of Anchored FPSO
,”
ASME J. Offshore Mech. Arct. Eng.
,
124
(
4
), pp.
203
211
. 10.1115/1.1513176
14.
Sun
,
L.
, and
Sun
,
H.
,
2012
, “
Risk Management of Key Issues of FPSO
,”
J. Mar. Sci. Appl.
,
11
(
4
), pp.
402
409
. 10.1007/s11804-012-1149-7
15.
ABS, 2018, “Safehull-Dynamic Loading Approach for Vessels,” Notes, (May), https://ww2.eagle.org/content/dam/eagle/rules-and-guides/current/design_and_analysis/140_safehulldlaforvessels/DLA-Vessels_Guide_e-May18.pdf, Accessed July 17, 2019.
16.
Xu
,
J.
,
1997
, “
Identification of Ship Coupled Heave and Pitch Motions Using Neutral Networks
.”
17.
Akandu
,
E.
, and
Wugha
,
K. N.
,
2018
, “
“Analysis of the Heave and Pitch Motions of an FPSO in the Gulf of Guinea,” Journal of Ocean
,”
Mech. Aerosp.-Sci. Eng.
,
55
(
1
), pp.
1
9
.
18.
Bertram
,
V.
,
2012
,
“Chapter 4—Ship Seakeeping,” Practical Ship Hydrodynamics
,
Butterworth-Heinemann
,
Oxford
,
143
204
.
19.
Kim
,
Y. S.
,
Nam
,
B. W.
,
Kim
,
D. W.
, and
Kim
,
Y. S.
,
2007
, “
Study on Coupling Effects of Ship Motion and Sloshing
,”
Ocean Eng.
,
34
(
16
), pp.
2176
2187
. 10.1016/j.oceaneng.2007.03.008
20.
Cariou
,
A.
, and
Casella
,
G.
,
1999
, “
Liquid Sloshing in Ship Tanks: A Comparative Study of Numerical Simulation
,”
Mar. Struct.
,
12
(
3
), pp.
183
198
. 10.1016/S0951-8339(99)00026-X
21.
de Lauzon
,
J.
,
Benhamou
,
A.
, and
Malenica
,
S.
,
2015
, “
Numerical Simulations of WILS Experiments
,”
25th International Offshore and Polar Engineering Conference
,
Hawaii
,
June 21–26
, pp.
104
113
.
22.
Vásquez
,
G.
,
Fonseca
,
N.
, and
Guedes
Soares
, C,
2015
, “
Experimental and Numerical Study of the Vertical Motions of a Bulk Carrier and a Ro-Ro Ship in Extreme Waves
,”
J. Ocean Eng. Mar. Energy
,
1
(
3
), pp.
237
253
. 10.1007/s40722-015-0019-1
23.
Molland
,
A. F.
,
2008
,
Chapter 7—Seakeeping,” The Maritime Engineering Reference Book: A Guide to Ship Design, Construction and Operation
,
Butterworth-Heinemann
,
Oxford
, pp.
483
577
.
24.
Bertram
,
V.
,
2012
,
Chapter 1—Introduction,” Practical Ship Hydrodynamics
,
Butterworth-Heinemann
,
Oxford
, pp.
1
39
.
25.
Yousefi
,
R.
,
Shafaghat
,
R.
, and
Shakeri
,
M.
,
2013
, “
Hydrodynamic Analysis Techniques for High-Speed Planing Hulls
,”
Appl. Ocean Res.
,
42
, pp.
105
113
. 10.1016/j.apor.2013.05.004
26.
Li
,
Z.
,
Ren
,
H.
,
Liu
,
R.
, and
Li
,
H.
,
2017
, “
Time Domain Rankine-Green Panel Method for Offshore Structures
,”
J. Ocean Univ. China
,
16
(
1
), pp.
65
73
. 10.1007/s11802-017-2835-5
27.
Ten
,
I.
, and
Chen
,
X. B.
,
2010
, “
A Coupled Rankine—Green Function Method Applied to the Forward-Speed Seakeeping Problem Mathematical Formulation
,”
25th International Workshop Water Waves Floating Bodies
,
Harbin, China
,
May 9–12
, p.
4
.
28.
Rhee
,
S. H.
,
2005
, “
“Unstructured Grid Based Reynolds-Averaged Navier-Stokes Method for Liquid Tank Sloshing,” Journal of Fluids Engineering
,”
Trans. ASME
,
127
(
3
), pp.
572
582
.
29.
Faltinsen
,
O. M.
, and
Timokha
,
A. N.
,
2009
,
Sloshing
,
Cambridge University Press
,
New York
.
30.
Orji
,
C. U.
, and
Woodward
,
M.
,
2015
, “
Roll Motion Analysis of FPSO From Free Decay Data in Calm Sea
,”
12th International Marine Design Conference
,
Tokyo, Japan
, pp.
313
324
.
31.
Yabe
,
T.
,
Xiao
,
F.
, and
Utsumi
,
T.
,
2001
, “
The Constrained Interpolation Profile Method for Multiphase Analysis
,”
J. Comput. Phys.
,
169
(
2
), pp.
556
593
. 10.1006/jcph.2000.6625
32.
Wackers
,
J.
,
Koren
,
B.
,
Raven
,
H. C.
,
van der Ploeg
,
A.
,
Starke
,
A. R.
,
Deng
,
G. B.
,
Queutey
,
P.
,
Visonneau
,
M.
,
Hino
,
T.
, and
Ohashi
,
K.
,
2011
, “
Free-Surface Viscous Flow Solution Methods for Ship Hydrodynamics
,”
Arch. Comput. Methods Eng.
,
18
(
1
), pp.
1
41
. 10.1007/s11831-011-9059-4
33.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
,
2007
,
An Introduction to Computational Fluid Dynamics: The Finite Volume Method
,
Pearson Education Limited, Harlow
,
England
.
34.
Ferziger
,
J. H.
, and
Peric
,
M.
,
2002
,
Computational Methods for Fluid Dynamics
,
Springer-Verlag Berlin Heidelberg
,
New York
.
35.
Islam
,
M.
,
Islam
,
M.
, and
Baree
,
M.
,
1970
, “
Computation of Ship Responses in Waves Using Panel Method
,”
J. Nav. Archit. Mar. Eng.
,
1
(
1
), pp.
35
46
. 10.3329/jname.v1i1.2037
36.
Welch
,
J. E.
,
Harlow
,
F. H.
,
Shannon
,
J. P.
, and
Daly
,
B. J.
,
1966
,
The MAC Method: A Computing Technique for Solving Viscous, Incompressible Transient Fluid-Flow Problems Involving Free Surfaces
,
Los Alamos
,
NM
.
37.
Hirt
,
C. W.
,
Nichols
,
B. D.
, and
Romero
,
N. C.
,
1975
,
SOLA- A Numerical Solution Algorithm for Transient Fluid Flows
,
Los Alamos
,
New Mexico
.
38.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for Dynamics of Free Boundaries
,”
J. Comput. Phys.
, (
39
), pp.
201
221
. 10.1016/0021-9991(81)90145-5
39.
Peric
,
M.
,
Zorn
,
T.
,
el Moctar
,
O.
,
Schellin
,
T. E.
, and
Kim
,
Y. S.
,
2009
, “
Simulation of Sloshing in LNG-Tanks
,”
ASME J. Offshore Mech. Arct. Eng.
,
131
(
3
), pp.
977
988
. 10.1115/1.3058688
40.
Liu
,
M. B.
, and
Liu
,
G. R.
,
2010
, “
Smoothed Particle Hydrodynamics (SPH): An Overview and Recent Developments
,”
Arch. Comput. Methods Eng.
,
17
(
1
), pp.
25
76
. 10.1007/s11831-010-9040-7
41.
Jiang
,
B. N.
, and
Povinelli
,
L. A.
,
1990
, “
Least-Squares Finite Element Method for Fluid Dynamics
,”
Comput. Methods Appl. Mech. Eng.
,
81
(
1
), pp.
13
37
. 10.1016/0045-7825(90)90139-D
42.
Ma
,
Q. W.
,
Wu
,
G. X.
, and
Eatock Taylor
,
R.
,
2001
, “
Finite Element Simulation of Fully Non-Linear Interaction Between Vertical Cylinders and Steep Waves. Part 1: Methodology and Numerical Procedure
,”
Int. J. Numer. Methods Fluids
,
36
(
3
), pp.
265
285
. 10.1002/fld.131
43.
Colagrossi
,
A.
, and
Landrini
,
M.
,
2003
, “
Numerical Simulation of Interfacial Flows by Smoothed Particle Hydrodynamics
,”
J. Comput. Phys.
,
191
(
2
), pp.
448
475
. 10.1016/S0021-9991(03)00324-3
44.
Monaghan
,
J. J.
,
2000
, “
SPH Without a Tensile Instability
,”
J. Comput. Phys.
,
159
(
2
), pp.
290
311
. 10.1006/jcph.2000.6439
45.
Jiao
,
J.
,
Chen
,
C.
, and
Ren
,
H.
,
2019
, “
A Comprehensive Study on Ship Motion and Load Responses in Short-Crested Irregular Waves
,”
Int. J. Nav. Arch. Ocean Eng.
,
11
(
1
), pp.
364
379
. 10.1016/j.ijnaoe.2018.07.003
46.
Grigoropoulos
,
G. J.
, and
Katsaounis
,
G. M.
,
2014
, “
Measuring Procedures for Seakeeping Tests of Large-Scaled Ship Models at Sea
,”
13th IMEKO TC4 Symposium on Measurements for Research and Industrial Applications, Held Together with the 9th Workshop on ADC Modeling and Testing
,
Athens, Greece
,
Sept. 29–Oct. 1
, pp.
135
139
.
47.
Nocerino
,
E.
,
Menna
,
F.
, and
Remondino
,
F.
,
2015
, “
Comparison Between Single and Multi-Camera View Videogrammetry for Estimating 6DOF of a Rigid Body
,”
Videometrics, Range Imaging, Appl. XIII
,
June 21–25
9528
, p.
95280K
. 10.1117/12.2184977
48.
Teigland
,
H.
,
Flåten
,
A.
,
Lied
,
M. R.
,
Smith
,
C. C.
, and
Nyland
,
J. F.
,
2017
, “
Minimizing Motions of Floating Vessels Using the Moving Frame Method in Dynamics
.”
49.
“Marine & Underwater | Qualisys,” https://www.qualisys.com/applications/engineering/marine-underwater/, Accessed Feb. 10, 2020.
50.
Clauss
,
G. F.
,
1999
, “
Task-Related Wave Groups for Seakeeping Tests or Simulation of Design Storm Waves
,”
Appl. Ocean Res.
,
21
(
5
), pp.
219
234
. 10.1016/S0141-1187(99)00017-6
51.
ITTC
,
2014
, “
Final Report and Recommendations to the 27th ITTC
,”
27th International Towing Tank Conference
,
Jan. 2012
, pp.
27
28
.
52.
Mikelis
,
N. E.
,
Miller
,
J. K.
, and
Taylor
,
K. V.
,
1984
, “
Sloshing in Partially Filled Liquid Tanks and Its Effects on Ship Motions: Numerical Simulation and Experimental Verification
,”
Royal Institution of Naval Architects
,
London
,
Apr. 11
, p.
14
.
53.
Arai
,
M.
,
1986
, “
Experimental and Numerical Studies of Sloshing in Liquid Cargo Tanks With Internal Structures
,”
IHI Eng. Rev.
,
19
(
2
), pp.
51
56
.
54.
Kim
,
Y.
,
2001
, “
Coupled Analysis of Ship Motions and Sloshing Flows
,”
13th International Workshop on Water Waves and Floating Bodies
,
Hiroshima, Japan
,
Apr. 22–25
, p.
4
.
55.
Kim
,
Y.
,
2002
, “
A Numerical Study on Sloshing Flows Coupled With Ship Motion—The Anti-Rolling Tank Problem
,”
J. Ship Res.
,
46
(
1
), pp.
52
62
.
56.
Molin
,
B.
,
Remy
,
F.
,
Rigaud
,
S.
, and
de Jouette
,
C.
,
2002
, “
LNG-FPSO’s: Frequency Domain, Coupled Analysis of Support and Liquid Cargo Motion
,”
10th International Congress of the International Maritime Association of the Mediterranean
,
Rethymnon, Greece
,
May 13–17
.
57.
Rognebakke
,
O. F.
, and
Faltinsen
,
O. M.
,
2003
, “
Coupling of Sloshing and Ship Motions
,”
J. Ship Res.
,
47
(
3
), pp.
208
221
.
58.
Malenica
,
S.
,
Zalar
,
M.
, and
Chen
,
X. B.
,
2003
, “
Dynamic Coupling of Seakeeping and Sloshing
,”
13th International Offshore and Polar Engineering Conference
,
Honolulu, HI
,
May 25–30
, pp.
486
492
.
59.
Newman
,
J. N.
,
2005
, “
Wave Effects on Vessels With Internal Tanks
,”
20th International Workshop on Water Waves and Floating Bodies
,
Longyearbyen, Norway
,
May 29–June 1
, pp.
0
4
.
60.
Kim
,
Y.
,
Nam
,
B.-W.
,
Kim
,
D.
,
Lee
,
Y.-B.
, and
Lee
,
J.-H.
,
2006
, “
Study on Coupling Effects of Sloshing and Ship Motion
,”
16th International Offshore and Polar Engineering Conference
,
San Francisco, CA
,
May 28–June 2
, pp.
225
229
.
61.
Nam
,
B.-W.
,
Kim
,
Y.
,
Kim
,
D.-W.
, and
Kim
,
Y.-S.
,
2009
, “
Experimental and Numerical Studies on Ship Motion Responses Coupled With Sloshing in Waves
,”
J. Ship Res.
,
53
(
2
), pp.
68
82
.
62.
Kim
,
H.
,
Dey
,
M. K.
,
Oshima
,
N.
, and
Lee
,
Y. W.
,
2018
, “
Numerical Study on Sloshing Characteristics With Reynolds Number Variation in a Rectangular Tank
,”
Computation
,
6
(
4
), p.
53
. 10.3390/computation6040053
63.
Bunnik
,
T.
, and
Veldman
,
A.
,
2010
, “
Modelling the Effect of Sloshing on Ship Motions
,”
29th International Conference on Offshore Mechanics and Arctic Engineering
,
Shanghai, China
,
May 31–June 5
, pp.
279
286
.
64.
Molin
,
B.
,
Remy
,
F.
,
Ledoux
,
A.
, and
Ruiz
,
N.
,
2008
, “
Effect of Roof Impacts on Coupling Between Wave Response and Sloshing in Tanks of LNG Carriers
,”
27th International Conference on Offshore Mechanics and Arctic Engineering
,
Estoril, Portugal
,
June 15–20
, pp.
15
24
.
65.
Gou
,
Y.
,
Kim
,
Y.
, and
Kim
,
T.-Y.
,
2011
, “
A Numerical Study on Coupling Between Ship Motions and Sloshing in Frequency and Time Domains
,”
21st International Offshore and Polar Engineering Conference
,
Maui, HI
,
June 19–24
, pp.
158
164
.
66.
Lee
,
S. J.
,
Kim
,
M. H.
,
Lee
,
D. H.
,
Kim
,
J. W.
,
Shin
,
Y. S.
, and
Kim
,
Y. H.
,
2006
, “
The Effects of LNG-Tank Sloshing on the Roll Responses of LNG-Carriers
,”
16th International Offshore and Polar Engineering Conference
,
San Francisco, CA
,
May 28–June 2
, pp.
212
218
.
67.
Huang
,
Z. J.
,
Esenkov
,
O. E.
,
Donnell
,
B. J. O.
,
Yung
,
T. W.
, and
Sandström
,
R. E.
,
2007
, “
Improved Prediction of Full-Scale Roll Motions for Vessels with Large Liquid Tanks
,”
17th International Offshore and Polar Engineering Conference
,
Lisbon, Portugal
,
July 1–6
, pp.
1889
1892
.
68.
Kim
,
B.
, and
Shin
,
Y. S.
,
2008
, “
Coupled Seakeeping with Liquid Sloshing in Ship Tanks
,”
27th International Conference on Offshore Mechanics and Arctic Engineering
,
Estoril, Portugal
,
June 15–20
, pp.
247
257
.
69.
Li
,
Y. L.
,
Zhu
,
R. C.
,
Miao
,
G. P.
, and
Fan
,
J.
,
2012
, “
Simulation of Tank Sloshing Based on OpenFOAM and Coupling With Ship Motions in Time Domain
,”
J. Hydrodyn.
,
24
(
3
), pp.
450
457
. 10.1016/S1001-6058(11)60266-7
70.
Lee
,
S. J.
, and
Kim
,
M. H.
,
2010
, “
The Effects of Inner-Liquid Motion on LNG Vessel Responses
,”
ASME J. Offshore Mech. Arct. Eng.
,
132
(
2
), p.
021101
. 10.1115/1.4000391
71.
Kim
,
J. W.
,
Kim
,
K.
,
Kim
,
P. S.
, and
Shin
,
Y. S.
,
2005
, “
Sloshing-Ship Motion Coupling Effect for the Sloshing Impact Load on the LNG Containment System
,”
15th International Offshore and Polar Engineering Conference
,
Seoul, South Korea
,
June 19–24
, pp.
282
291
.
72.
Lin
,
F.
,
Ge
,
C.
,
Polezhayeva
,
H. A.
, and
Byers
,
R.
,
2009
, “
Coupled Seakeeping Analysis and Sloshing Load for LNG and FPSO Vessels
,”
19th International Offshore and Polar Engineering Conference
,
Osaka, Japan
,
July 21–26
, pp.
269
275
.
73.
Du
,
Y.
,
Wang
,
C. X.
, and
Zhang
,
N.
,
2019
, “
Numerical Simulation on Coupled Ship Motions With Nonlinear Sloshing
,”
Ocean Eng.
,
178
, pp.
493
500
. 10.1016/j.oceaneng.2019.02.057
74.
Nam
,
B.
, and
Kim
,
Y.
,
2007
, “
Effects of Sloshing on the Motion Response of LNG-FPSO in Waves
,”
22nd International Workshop on Water Waves and Floating Bodies
,
Plitvice, Croatia
,
Apr. 15–18
, pp.
153
156
.
75.
Rocha
,
T. P.
,
Dotta
,
R.
,
Vieira
,
D. P.
,
de Mello
,
P. C.
,
Malta
,
E. B.
, and
Nishimoto
,
K.
,
2015
, “
Experimental Investigation on the Influence of Liquid Cargo in Floating Vessels Motions
,”
3rd Offshore Technology Conference Brasil
,
Rio de Janeiro, Brazil
,
Oct. 27–29
, pp.
1292
1302
.
76.
Nasar
,
T.
,
Sannasiraj
,
S. A. A.
, and
Sundar
,
V.
,
2010
, “
Motion Responses of Barge Carrying Liquid Tank
,”
Ocean Eng.
,
37
(
10
), pp.
935
946
. 10.1016/j.oceaneng.2010.03.006
77.
Gaillarde
,
G.
,
Ledoux
,
A.
, and
Lynch
,
M.
,
2004
, “
Coupling Between Liquefied Gas and Vessel’s Motion for Partially Filled Tanks: Effect on Seakeeping
,”
Design and Operations of Gas Carriers
,
Sept.
, The Royal Institution of Naval Architects London, UK, pp.
33
39
.
78.
Huang
,
Z. J.
,
Danaczko
,
M. A.
,
Esenkov
,
O. E.
,
Martin
,
C. B.
,
O’Donnell
,
B. J.
, and
Yung
,
T. W.
,
2009
, “
Coupled Tank Sloshing and LNG Carrier Motions
,”
19th International Offshore and Polar Engineering Conference
,
Osaka, Japan
,
July 21–26
, pp.
92
99
.
79.
Zhao
,
D. Y.
,
Hu
,
Z. Q.
,
Zhou
,
K.
,
Chen
,
G.
,
Chen
,
X. B.
, and
Feng
,
X. Y.
,
2018
, “
Coupled Analysis of Integrated Dynamic Responses of Side-by-Side Offloading FLNG System
,”
Ocean Eng.
,
168
(
22
), pp.
60
82
. 10.1016/j.oceaneng.2018.08.016
80.
Francescutto
,
A.
, and
Contento
,
G.
,
1994
, “
An Experimental Study of the Coupling Between Roll Motion and Sloshing in a Compartment
,”
4th International Offshore and Polar Engineering Conference
,
Osaka, Japan
,
April 10–15
, pp.
283
291
.
81.
Journée
,
J. M. J.
,
1997
, “
Liquid Cargo and Its Effect on Ship Motions
,”
Proceedings of the 6th International Conference of Stability of Ships and Ocean Structures, Bulgarian Society of Naval Architects and Marine Engineers
,
Varna, Bulgaria
,
Sept. 22–27
, pp.
137
150
.
82.
Jiang
,
S. C.
,
Teng
,
B.
,
Bai
,
W.
, and
Gou
,
Y.
,
2015
, “
Numerical Simulation of Coupling Effect Between Ship Motion and Liquid Sloshing Under Wave Action
,”
Ocean Eng.
,
108
(
16
), pp.
140
154
. 10.1016/j.oceaneng.2015.07.044
83.
Park
,
J. J.
,
Kawabe
,
H.
,
Kim
,
M. S.
,
Kim
,
B. W.
, and
Ha
,
M. K.
,
2009
, “
Sloshing Assessment of LNG-FPSOs for Partial Filling Operations
,”
19th International Offshore and Polar Engineering Conference
,
Osaka, Japan
,
July 21–26
, pp.
276
283
.
84.
Nasar
,
T.
,
Sannasiraj
,
S. A.
, and
Sundar
,
V.
,
2008
, “
Liquid Sloshing Dynamics in a Container Subjected to Coupled Mode Excitation
,”
27th International Conference on Offshore Mechanics and Arctic Engineering
,
Estoril, Portugal
,
June 15–20
, pp.
193
200
.
85.
Lee
,
S. J.
, and
Kim
,
M. H.
,
2008
, “
The Effects of Tank Sloshing on the Coupled Responses of LNG Vessel and Floating Terminal
,”
23rd International Workshop on Water Waves and Floating Bodies
,
Jeju, Korea
,
Apr. 13–16
, pp.
178
182
.
86.
Zhao
,
W. H.
,
Yang
,
J. M.
,
Tao
,
L. B.
, and
White
,
D.
,
2014
, “
Research on the Coupling Effects Between Ship Motions and Sloshing
,”
33rd International Conference on Ocean, Offshore and Arctic Engineering
,
San Francisco, CA
,
June 8–13
, p. V08BT06A005.
87.
Zhuang
,
Y.
, and
Wan
,
D. C.
,
2016
, “
Numerical Study on Coupling Effects of FPSO Ship Motion and LNG Tank Sloshing in Low-Filling Conditions
,”
Appl. Math. Mech.
,
37
(
12
), pp.
1378
1393
.
88.
Zhuang
,
Y.
, and
Wan
,
D.
, “
The Fully Coupled Effects of FPSO With Different Filling Ratio Tanks in CFD Method
.”
89.
Hu
,
Z.-Q.
,
Wang
,
S.-Y.
,
Chen
,
G.
,
Chai
,
S.-H.
, and
Jin
,
Y.-T.
,
2017
, “
The Effects of LNG-Tank Sloshing on the Global Motions of FLNG System
,”
Int. J. Nav. Arch. Ocean Eng.
,
9
(
1
), pp.
114
125
. 10.1016/j.ijnaoe.2016.09.007
90.
Huang
,
S.
,
Duan
,
W.
,
Han
,
X.
,
Nicoll
,
R.
,
You
,
Y.
, and
Sheng
,
S.
,
2018
, “
Nonlinear Analysis of Sloshing and Floating Body Coupled Motion in the Time-Domain
,”
Ocean Eng.
,
164
(
18
), pp.
350
366
. 10.1016/j.oceaneng.2018.06.003
91.
Servan-Camas
,
B.
,
Cercos-Pita
,
J. L.
,
Colom-Cobb
,
J.
,
Garcia-Espinosa
,
J.
, and
Souto-Iglesias
,
A.
,
2016
, “
Time Domain Simulation of Coupled Sloshing-Seakeeping Problems by SPH-FEM Coupling
,”
Ocean Eng.
,
123
(
23
), pp.
383
396
. 10.1016/j.oceaneng.2016.07.003
92.
Su
,
Y.
, and
Liu
,
Z. Y.
,
2017
, “
Coupling Effects of Barge Motion and Sloshing
,”
Ocean Eng.
,
140
(
12
), pp.
352
360
. 10.1016/j.oceaneng.2017.06.006
93.
Lyu
,
W. J.
,
Riesner
,
M.
,
Peters
,
A.
,
el Moctar
,
O.
, and
el Moctar
,
O.
,
2019
, “
A Hybrid Method for Ship Response Coupled with Sloshing in Partially Filled Tanks
,”
Mar. Struct.
,
67
(
5
), p.
102643
. 10.1016/j.marstruc.2019.102643
94.
Ibrahim
,
R. A.
,
2020
, “
Assessment of Breaking Waves and Liquid Sloshing Impact
,”
Nonlinear Dyn.
,
100
(
3
), pp.
1837
1925
. 10.1007/s11071-020-05605-7
95.
Igbadumhe
,
J.-F.
,
Sallam
,
O.
,
Fürth
,
M.
, and
Feng
,
R.
,
2020
, “
Experimental Determination of Non-Linear Roll Damping of an FPSO Pure Roll Coupled With Liquid Sloshing in Two-Row Tanks
,”
J. Mar. Sci. Eng.
,
8
(
8
), p.
582
. 10.3390/jmse8080582
96.
Zhao
,
W.
,
Efthymiou
,
M.
,
McPhail
,
F.
, and
Wille
,
S.
,
2016
, “
Nonlinear Roll Damping of a Barge With and Without Liquid Cargo in Spherical Tanks
,”
J. Ocean Eng. Sci.
,
1
(
1
), pp.
84
91
. 10.1016/j.joes.2015.12.002
You do not currently have access to this content.