Abstract

Numerical simulations are used to explore the potential for local blockage effects and dynamic tuning strategies to enhance the performance of turbines in tidal channels. Full- and partial-width arrays of turbines, modeled using the volume-flux-constrained actuator disc and blade element momentum theories, are embedded within a two-dimensional channel with a naturally low ratio of drag to inertial forces. For steady flow, the local blockage effect observed by varying the cross-stream spacing between the turbines is found to agree very well with the predictions of the two-scale actuator disc theory of Nishino and Willden (2012, “The Efficiency of an Array of Tidal Turbines Partially Blocking a Wide Channel,” J. Fluid Mech., 708, pp. 596–606). For oscillatory flow, however, results show that, consistent with the findings of Bonar et al. (2019, “On the Arrangement of Tidal Turbines in Rough and Oscillatory Channel Flow,” J. Fluid Mech., 865, pp. 790–810), the shorter and more highly blocked arrays produce considerably more power than predicted by two-scale theory. Results also show that, consistent with the findings of Vennell (2016, “An Optimal Tuning Strategy for Tidal Turbines,” Proc. R. Soc. A, 472(2195), p. 20160047), the “dynamic” tuning strategy, in which the tuning of the turbines is varied over the tidal cycle, can only produce significantly more power than a temporally fixed turbine tuning if the array has a large number of turbine rows or a large local blockage ratio. For all cases considered, trends are consistent between the two turbine representations but the effects of local blockage and dynamic tuning are found to be much less significant for the more realistic tidal rotor than for the idealized actuator disc.

References

1.
Vennell
,
R.
,
Funke
,
S. W.
,
Draper
,
S.
,
Stevens
,
C.
, and
Divett
,
T.
,
2015
, “
Designing Large Arrays of Tidal Turbines: A Synthesis and Review
,”
Renew. Sustain. Energy Rev.
,
41
, pp.
454
472
. 10.1016/j.rser.2014.08.022
2.
Garrett
,
C.
, and
Cummins
,
P.
,
2007
, “
The Efficiency of a Turbine in a Tidal Channel
,”
J. Fluid Mech.
,
588
, pp.
243
251
. 10.1017/S0022112007007781
3.
Schluntz
,
J.
, and
Willden
,
R. H. J.
,
2015
, “
The Effect of Blockage on Tidal Turbine Rotor Design and Performance
,”
Renew. Energy
,
81
, pp.
432
441
. 10.1016/j.renene.2015.02.050
4.
Bahaj
,
A. S.
,
Molland
,
A. F.
,
Chaplin
,
J. R.
, and
Batten
,
W. M. J.
,
2007
, “
Power and Thrust Measurements of Marine Current Turbines Under Various Hydrodynamic Flow Conditions in a Cavitation Tunnel and a Towing Tank
,”
Renew. Energy
,
32
(
3
), pp.
407
426
. 10.1016/j.renene.2006.01.012
5.
Nishino
,
T.
, and
Willden
,
R. H. J.
,
2012
, “
The Efficiency of an Array of Tidal Turbines Partially Blocking a Wide Channel
,”
J. Fluid Mech.
,
708
, pp.
596
606
. 10.1017/jfm.2012.349
6.
Vogel
,
C. R.
,
Houlsby
,
G. T.
, and
Willden
,
R. H. J.
,
2016
, “
Effect of Free Surface Deformation on the Extractable Power of a Finite Width Turbine Array
,”
Renew. Energy
,
88
, pp.
317
324
. 10.1016/j.renene.2015.11.050
7.
Garrett
,
C.
, and
Cummins
,
P.
,
2005
, “
The Power Potential of Tidal Currents in Channels
,”
Proc. R. Soc. A
,
461
(
2060
), pp.
2563
2572
. 10.1098/rspa.2005.1494
8.
Bonar
,
P. A. J.
,
Chen
,
L.
,
Schnabl
,
A. M.
,
Venugopal
,
V.
,
Borthwick
,
A. G. L.
, and
Adcock
,
T. A. A.
,
2019
, “
On the Arrangement of Tidal Turbines in Rough and Oscillatory Channel Flow
,”
J. Fluid Mech.
,
865
, pp.
790
810
. 10.1017/jfm.2019.68
9.
Vogel
,
C. R.
,
Willden
,
R. H. J.
, and
Houlsby
,
G. T.
,
2018
, “
Blade Element Momentum Theory for a Tidal Turbine
,”
Ocean Eng.
,
169
, pp.
215
226
. 10.1016/j.oceaneng.2018.09.018
10.
Adcock
,
T. A. A.
,
Draper
,
S.
,
Houlsby
,
G. T.
,
Borthwick
,
A. G. L.
, and
Serhadlioglu
,
S.
,
2013
, “
The Available Power From Tidal Stream Turbines in the Pentland Firth
,”
Proc. R. Soc. A
,
469
(
2157
), p.
20130072
. 10.1098/rspa.2013.0072
11.
Serhadlioglu
,
S.
,
Adcock
,
T. A. A.
,
Houlsby
,
G. T.
,
Draper
,
S.
, and
Borthwick
,
A. G. L.
,
2013
, “
Tidal Stream Energy Resource Assessment of the Anglesey Skerries
,”
Int. J. Mar. Energy
,
3
, pp.
e98
e111
. 10.1016/j.ijome.2013.11.014
12.
Bonar
,
P. A. J.
,
Schnabl
,
A. M.
,
Lee
,
W.-K.
, and
Adcock
,
T. A. A.
,
2018
, “
Assessment of the Malaysian Tidal Stream Energy Resource Using an Upper Bound Approach
,”
J. Ocean Eng. Mar. Energy
,
4
(
2
), pp.
99
109
. 10.1007/s40722-018-0110-5
13.
Vennell
,
R.
, and
Adcock
,
T. A. A.
,
2014
, “
Energy Storage Inherent in Large Tidal Turbine Farms
,”
Proc. R. Soc. A
,
470
(
2166
), p.
20130580
. 10.1098/rspa.2013.0580
14.
Vennell
,
R.
,
2016
, “
An Optimal Tuning Strategy for Tidal Turbines
,”
Proc. R. Soc. A
,
472
(
2195
), p.
20160047
. 10.1098/rspa.2016.0047
15.
Chen
,
L.
,
Bonar
,
P. A. J.
,
Vogel
,
C. R.
, and
Adcock
,
T. A. A.
,
2019
, “
A Note on the Tuning of Turbines in Tidal Channels
,”
J. Ocean Eng. Mar. Energy
,
5
(
1
), pp.
85
98
. 10.1007/s40722-019-00132-z
16.
Houlsby
,
G. T.
,
Draper
,
S.
, and
Oldfield
,
M. L. G.
,
2008
, “
Application of Linear Momentum Actuator Disc Theory to Open Channel Flow
,”
Department of Engineering Science, University of Oxford
, Technical Report No. OUEL 2296/08.
17.
Houlsby
,
G. T.
, and
Vogel
,
C. R.
,
2016
, “
The Power Available to Tidal Turbines in an Open Channel Flow
,”
Proc. ICE—Energy
,
170
(
1
), pp.
12
21
.
18.
Vennell
,
R.
,
2010
, “
Tuning Turbines in a Tidal Channel
,”
J. Fluid Mech.
,
663
, pp.
253
267
. 10.1017/S0022112010003502
19.
Draper
,
S.
, and
Nishino
,
T.
,
2014
, “
Centred and Staggered Arrangements of Tidal Turbines
,”
J. Fluid Mech.
,
739
, pp.
72
93
. 10.1017/jfm.2013.593
20.
Draper
,
S.
, and
Nishino
,
T.
,
2014
, “
Centred and Staggered Arrangements of Tidal Turbines—Erratum
,”
J. Fluid Mech.
,
743
, pp.
636
636
. 10.1017/jfm.2014.53
21.
Draper
,
S.
,
Nishino
,
T.
,
Adcock
,
T. A. A.
, and
Taylor
,
P. H.
,
2016
, “
Performance of an Ideal Turbine in an Inviscid Shear Flow
,”
J. Fluid Mech.
,
796
, pp.
86
112
. 10.1017/jfm.2016.247
22.
Whelan
,
J. I.
,
Graham
,
J. M. R.
, and
Peiro
,
J.
,
2009
, “
A Free-Surface and Blockage Correction for Tidal Turbines
,”
J. Fluid Mech.
,
624
, pp.
281
291
. 10.1017/S0022112009005916
23.
Nishino
,
T.
, and
Willden
,
R. H. J.
,
2012
, “
Effects of 3D Channel Blockage and Turbulent Wake Mixing on the Limit of Power Extraction by Tidal Turbines
,”
Int. J. Heat Fluid Flow
,
37
, pp.
123
135
. 10.1016/j.ijheatfluidflow.2012.05.002
24.
Vogel
,
C.
,
2014
, “
Theoretical Limits to Tidal Stream Energy Extraction
,”
DPhil thesis
,
University of Oxford
,
UK
.
25.
Wimshurst
,
A.
,
Vogel
,
C.
, and
Willden
,
R.
,
2018
, “
Cavitation Limits on Tidal Turbine Performance
,”
Ocean Eng.
,
152
, pp.
223
233
. 10.1016/j.oceaneng.2018.01.060
26.
Vogel
,
C. R.
,
Willden
,
R. H. J.
, and
Houlsby
,
G. T.
,
2019
, “
Tidal Stream Turbine Power Capping in a Head-Driven Tidal Channel
,”
Renew. Energy
,
136
, pp.
491
499
. 10.1016/j.renene.2019.01.014
27.
Cao
,
B.
,
Willden
,
R. H. J.
, and
Vogel
,
C. R.
,
2018
, “
Effects of Blockage and Freestream Turbulence Intensity on Tidal Rotor Design and Performance
,”
Proceedings of the 3rd International Conference on Renewable Energies Offshore
,
Lisbon, Portugal
,
Oct. 8–10
.
28.
Wimshurst
,
A.
, and
Willden
,
R. H. J.
,
2016
, “
Computational Analysis of Blockage Designed Tidal Turbine Rotors
,”
Proceedings of the 2nd International Conference on Renewable Energies Offshore
,
Lisbon, Portugal
,
Oct. 24–26
.
29.
Willden
,
R. H. J.
,
Nishino
,
T.
, and
Schluntz
,
J.
,
2014
, “
Tidal Stream Energy: Designing for Blockage
,”
Proceedings of the 3rd Oxford Tidal Energy Workshop
,
Oxford, UK
,
Apr. 7–8
.
30.
Gong
,
X.
,
Li
,
Y.
, and
Lin
,
Z.
,
2018
, “
Effects of Blockage, Arrangement, and Channel Dynamics on Performance of Turbines in a Tidal Array
,”
J. Renew. Sustain. Energy
,
10
(
1
), p.
014501
. 10.1063/1.5009817
31.
Kubatko
,
E. J.
,
Westerink
,
J. J.
, and
Dawson
,
C.
,
2006
, “
hp Discontinuous Galerkin Methods for Advection Dominated Problems in Shallow Water Flow
,”
Comp. Meth. Appl. Mech. Eng.
,
196
(
1–3
), pp.
437
451
. 10.1016/j.cma.2006.05.002
32.
Kubatko
,
E. J.
,
Bunya
,
S.
,
Dawson
,
C.
, and
Westerink
,
J. J.
,
2009
, “
Dynamic p-Adaptive Runge-Kutta Discontinuous Galerkin Methods for the Shallow Water Equations
,”
Comp. Meth. Appl. Mech. Eng.
,
198
(
21–26
), pp.
1766
1774
. 10.1016/j.cma.2009.01.007
33.
Draper
,
S.
,
Houlsby
,
G. T.
,
Oldfield
,
M. L. G.
, and
Borthwick
,
A. G. L.
,
2010
, “
Modelling Tidal Energy Extraction in a Depth-Averaged Coastal Domain
,”
IET Renew. Power Gen.
,
4
(
6
), pp.
545
554
. 10.1049/iet-rpg.2009.0196
34.
Draper
,
S.
,
Borthwick
,
A. G. L.
, and
Houlsby
,
G. T.
,
2013
, “
Energy Potential of a Tidal Fence Deployed Near a Coastal Headland
,”
Phil. Trans. Roy. Soc. A
,
371
(
1985
), p.
20120176
. 10.1098/rsta.2012.0176
35.
Draper
,
S.
,
Stallard
,
T.
,
Stansby
,
P.
,
Way
,
S.
, and
Adcock
,
T.
,
2013
, “
Laboratory Scale Experiments and Preliminary Modelling to Investigate Basin Scale Tidal Stream Energy Extraction
,”
Proceedings of the 10th European Wave and Tidal Energy Conference
,
Aalborg, Denmark
,
Sept. 2–6
.
36.
Schnabl
,
A. M.
,
Moreira
,
T. M.
,
Wood
,
D.
,
Kubatko
,
E. J.
,
Houlsby
,
G. T.
,
McAdam
,
R. A.
, and
Adcock
,
T. A. A.
,
2019
, “
Implementation of Tidal Stream Turbines and Tidal Barrage Structures in DG-SWEM
,”
Proceedings of the ASME 38th International Conference on Ocean, Offshore and Arctic Engineering
,
Glasgow, UK
,
June 9–14
.
37.
Soulsby
,
R.
,
1997
,
Dynamics of Marine Sands: A Manual for Practical Applications
,
Thomas Telford Publications
,
London, UK
.
38.
Adcock
,
T. A. A.
,
2012
, “
On the Garrett & Cummins Limit
,”
Proceedings of the 1st Oxford Tidal Energy Workshop
,
Oxford, UK
,
Mar. 29–30
.
39.
Perez-Campos
,
E.
, and
Nishino
,
T.
,
2015
, “
Numerical Validation of the Two-Scale Actuator Disc Theory for Marine Turbine Arrays
,”
Proceedings of the 11th European Wave and Tidal Energy Conference
,
Nantes, France
,
Sept. 6–11
.
40.
Divett
,
T.
,
Vennell
,
R.
, and
Stevens
,
C.
,
2014
, “
Channel Scale Optimisation of Large Tidal Turbine Arrays in Packed Rows Using Large Eddy Simulations With Adaptive Mesh
,”
Proceedings of the 2nd Asian Wave and Tidal Energy Conference
,
Tokyo, Japan
,
July 28–30
.
41.
Vennell
,
R.
,
2011
, “
Tuning Tidal Turbines In-Concert to Maximise Farm Efficiency
,”
J. Fluid Mech.
,
671
, pp.
587
604
. 10.1017/S0022112010006191
42.
Bonar
,
P. A. J.
,
Adcock
,
T. A. A.
,
Venugopal
,
V.
, and
Borthwick
,
A. G. L.
,
2018
, “
Performance of Non-Uniform Tidal Turbine Arrays in Uniform Flow
,”
J. Ocean Eng. Mar. Energy
,
4
(
3
), pp.
231
241
. 10.1007/s40722-018-0118-x
You do not currently have access to this content.