Abstract

Knowing whether a remotely operated vehicle (ROV) is able to operate at certain foreknown environmental conditions is a question relevant to different actors during the vehicle’s life cycle: during design stages, buying an ROV, planning operations, and performing an operation. This work addresses a framework to assess motion feasibility in ROVs by using the concept of ROV-dynamic positioning capability (ROV-DPCap). Within the proposed framework, the ROV-DPCap number is defined to measure motion capability, and ROV-DPCap plots are used to illustrate results, for quasi-static standard (L2) and site-specific (L2s) conditions, and dynamic standard (L3) and site-specific (L3s) conditions. Data are computed by steady-state or time-domain simulations from the ROV model, depending on the desired analysis. To illustrate the use of the framework, numerical examples for L2 and L2s motion feasibility analyses for NTNU’s ROV Minerva are provided. Motion feasibility can be used to know whether an ROV is appropriately designed for a specific operation and choose the appropriate one for a certain need, for instance, when designing the DP system components or planning an operation from the environmental data and ROV-specific information. As expected, predictions can be improved when more detailed information about the ROV appears; the same framework can be used to provide more detailed answers to motion feasibility-related questions. The results are likely to be straightforwardly understood by people whose work/training is ROV related and can interpret the graphic results for different operation scenarios.

References

References
1.
Christ
,
R.
, and
Wernli
,
R.
,
2014
,
The ROV Manual, a User Guide for Remotely Operated Vehicles
,
Butterworth-Heinemann
,
Oxford
.
2.
Ludvigsen
,
M.
, and
Sørensen
,
A.
,
2016
, “
Towards Integrated Autonomous Underwater Operations for Ocean Mapping and Monitoring
,”
Annu. Rev. Control
,
42
, pp.
145
157
. 10.1016/j.arcontrol.2016.09.013
3.
Ramírez-Macías
,
J. A.
,
2019
, “
Dynamics and Motion Control of Underwater Remotely Operated Vehicles and Highly Flexible Elastic Rods
,” Ph.D. thesis,
School of Engineering, Universidad Pontificia Bolivariana
,
Medelln, Colombia
.
4.
Fossen
,
T.
,
2011
,
Handbook of Marine Craft Hydrodynamics and Motion Control
,
John Wiley & Sons
,
West Sussex, UK
.
5.
Dukan
,
F.
, and
Sørensen
,
A. J.
,
2012
, “
Altitude Estimation and Control of Rov by Use of DVL
,”
IFAC Proc. Vol.
,
45
(
27
), pp.
79
84
, 9th IFAC Conference on Manoeuvring and Control of Marine Craft. 10.3182/20120919-3-IT-2046.00014
6.
Dukan
,
F.
,
2014
, “
ROV Motion Control Systems
,” Ph.D. thesis,
Norwegian University of Science and Technology (NTNU)
,
Trondheim, Norway
.
7.
Candeloro
,
M.
,
Mosciaro
,
F.
,
Sørensen
,
A.
,
Ippoliti
,
G.
, and
Ludvigsen
,
M.
,
2015
, “
Sensor-Based Autonomous Path-Planner for Sea-Bottom Exploration and Mosaicking
,”
IFAC-PapersOnLine
,
28
(
16
), pp.
31
36
. 10.1016/j.ifacol.2015.10.254
8.
Fernandes
,
D.
,
Sørensen
,
A. J.
,
Pettersen
,
K. Y.
, and
Donha
,
D. C.
,
2015
, “
Output Feedback Motion Control System for Observation Class ROVs Based on a High-Gain State Observer: Theoretical and Experimental Results
,”
Control Eng. Pract.
,
39
, pp.
90
102
. 10.1016/j.conengprac.2014.12.005
9.
Rúa
,
S.
, and
Vásquez
,
R.
,
2016
, “
Development of a Low-Level Control System for the ROV Visor3
,”
Int. J. Navigation Obs.
,
2016
.
10.
Soylu
,
S.
,
Proctor
,
A. A.
,
Podhorodeski
,
R. P.
,
Bradley
,
C.
, and
Buckham
,
B. J.
,
2016
, “
Precise Trajectory Control for an Inspection Class ROV
,”
Ocean Eng.
,
111
, pp.
508
523
. 10.1016/j.oceaneng.2015.08.061
11.
Khojasteh
,
D.
, and
Kamali
,
R.
,
2017
, “
Design and Dynamic Study of a ROV With Application to Oil and Gas Industries of Persian Gulf
,”
Ocean Eng.
,
136
, pp.
18
30
. 10.1016/j.oceaneng.2017.03.014
12.
Anderlini
,
E.
,
Parker
,
G. G.
, and
Thomas
,
G.
,
2018
, “
Control of a ROV Carrying an Object
,”
Ocean Eng.
,
165
, pp.
307
318
. 10.1016/j.oceaneng.2018.07.022
13.
Baldini
,
A.
,
Ciabattoni
,
L.
,
Felicetti
,
R.
,
Ferracuti
,
F.
,
Freddi
,
A.
, and
Monteriù
,
A.
,
2018
, “
Dynamic Surface Fault Tolerant Control for Underwater Remotely Operated Vehicles
,”
ISA Trans.
,
78
, pp.
10
20
, Advanced Methods in Control and Signal Processing for Complex Marine Systems. 10.1016/j.isatra.2018.02.021
14.
Yan
,
J.
,
Gao
,
J.
,
Yang
,
X.
,
Luo
,
X.
, and
Guan
,
X.
,
2019
, “
Tracking Control of a Remotely Operated Underwater Vehicle With Time Delay and Actuator Saturation
,”
Ocean Eng.
,
184
, pp.
299
310
. 10.1016/j.oceaneng.2019.04.041
15.
DNV-GL
,
2016
, “
Standard DNVGL-ST-0111: Assessment of Station Keeping Capability of Dynamic Positioning Vessels
,” DNV-GL, July, Technical Report.
16.
Sørensen
,
A.
,
2011
, “
A Survey of Dynamic Positioning Control Systems
,”
Annu. Rev. Control
,
35
(
1
), pp.
123
136
. 10.1016/j.arcontrol.2011.03.008
17.
van‘t Veer
,
R.
, and
Gachet
,
M
,
2011
, “
Dynamic Positioning—Early Design, Capability and Offsets, a Novel Approach
,”
ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering
,
Rotterdam, The Netherlands
,
June 19–24
, Vol.
3
, pp.
755
764
.
18.
Kerkeni
,
S.
,
Metrikin
,
I.
, and
Jochmann
,
P
,
2013
, “
Capability Plots of Dynamic Positioning in Ice
,”
ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering
,
Nantes, France
,
June 9–14
.
19.
Nguyen
,
D.
,
Pivano
,
L.
, and
Smogeli
,
O.
,
2014
, “
Estimation of Dynamic Positioning Performance by Time-Domain Simulations—A Step Toward Safer Operations
,”
International Conference on Maritime and Port Technology and Development
,
Trondheim, Norway
,
Oct. 27–29
, pp.
109
116
.
20.
Giorgiutti
,
Y.
,
Rezende
,
F.
,
Boulland
,
J.
, and
Araujo
,
R
,
2015
, “
The Impact of Multi-Body Operations on DP Capability
,”
ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering
,
St. John's, Canada
,
May 31–June 5
.
21.
Metrikin
,
I.
,
Kerkeni
,
S.
,
Jochmann
,
P.
, and
Løset
,
S.
,
2015
, “
Experimental and Numerical Investigation of Dynamic Positioning in Level Ice
,”
ASME J. Offshore Mech. Arct. Eng.
,
137
(
3
), p.
031501
. 10.1115/1.4030042
22.
Du
,
J.
,
Hu
,
X.
,
Krstić
,
M.
, and
Sun
,
Y.
,
2016
, “
Robust Dynamic Positioning of Ships With Disturbances Under Input Saturation
,”
Automatica
,
73
, pp.
207
214
. 10.1016/j.automatica.2016.06.020
23.
Hassani
,
V.
,
Onstein
,
T. F.
, and
Pascoal
,
A. M.
,
2017
, “
Application of Data Driven Control to Dynamic Positioning
,”
IFAC-PapersOnLine
,
50
(
1
), pp.
12392
12397
, 20th IFAC World Congress. 10.1016/j.ifacol.2017.08.2505
24.
Du
,
J.
,
Hu
,
X.
,
Krstić
,
M.
, and
Sun
,
Y.
,
2018
, “
Dynamic Positioning of Ships With Unknown Parameters and Disturbances
,”
Control Eng. Pract.
,
76
, pp.
22
30
. 10.1016/j.conengprac.2018.03.015
25.
Værnø
,
S. A.
,
Skjetne
,
R.
,
Kjerstad
,
O. K.
, and
Calabro
,
V.
,
2019
, “
Comparison of Control Design Models and Observers for Dynamic Positioning of Surface Vessels
,”
Control Eng. Pract.
,
85
, pp.
235
245
. 10.1016/j.conengprac.2019.01.015
26.
Huvenne
,
V. A.
,
Robert
,
K.
,
Marsh
,
L.
,
Lo Iacono
,
C.
,
Le Bas
,
T.
, and
Wynn
,
R. B.
,
2018
, “ROVs and AUVs,”
Submarine Geomorphology
,
A.
Micallef
,
S.
Krastel
, and
A.
Savini
, eds.,
Springer International Publishing
,
Cham
, pp.
93
108
.
27.
Ramírez-Macías
,
J.
,
Vásquez
,
R.
,
Sørensen
,
A.
, and
Sævik
,
S
,
2017
, “
A Methodology for DP Capability Studies on Remotely Operated Vehicles
,”
ASME 2017 36th International Conference on Ocean, Offshore & Arctic Engineering
,
Trondheim, Norway
,
June 25–30
.
28.
Webb
,
D
,
1998
, “
DP and Operability Capabilities of the Dynamically Positioned Drillship Ocean Clipper
,”
IADC/SPE Asia Pacific Drilling Technology Conference
,
Jakarta, Indonesia
,
Sept. 7–9
, APDT, pp.
373
408
.
29.
IMCA
,
2000
, “
IMCA M 140 Specification for DP Capability Plots
,” The International Marine Contractors Association, Technical Report.
30.
Fang
,
K.
,
Li
,
R.
, and
Sudjianto
,
A.
,
2006
,
Design and Modeling for Computer Experiments
,
Chapman & Hall/CRC
,
London, UK
.
31.
Levy
,
S.
, and
Steinberg
,
D.
,
2010
, “
Computer Experiments: A Review
,”
AStA Adv. Stat. Anal.
,
94
(
4
), pp.
311
324
. 10.1007/s10182-010-0147-9
32.
Garud
,
S.
,
Karimi
,
I.
, and
Kraft
,
M.
,
2017
, “
Design of Computer Experiments: A Review
,”
Comput. Chem. Eng.
,
106
, pp.
71
95
. 10.1016/j.compchemeng.2017.05.010
33.
Hardin
,
R.
, and
Sloane
,
N.
,
1995
, “
Codes (Spherical) and Designs (Experimental)
,”
Proc. Symposia Appl. Math.
,
50
, pp.
179
206
.
34.
Saff
,
E.
, and
Kuijlaars
,
A.
,
1997
, “
Distributing Many Points on a Sphere
,”
Math. Intelligencer
,
19
(
1
), pp.
5
11
. 10.1007/BF03024331
35.
Brauchart
,
J.
, and
Grabner
,
P.
,
2015
, “
Distributing Many Points on Spheres: Minimal Energy and Designs
,”
J. Complex.
,
31
(
3
), pp.
293
326
. 10.1016/j.jco.2015.02.003
36.
Sørensen
,
A.
,
Dukan
,
F.
,
Ludvigsen
,
M.
,
Fernandes
,
D.
, and
Candeloro
,
M.
,
2012
,
Development of Dynamic Positioning and Tracking System for the ROV Minerva
,
Roberts
,
G. N.
, and
Sutton
,
R.
, eds.,
Institution of Engineering and Technology
,
Stevenage, UK
, pp.
113
128
.
37.
Sørensen
,
A.
,
2013
,
Marine Control Systems: Propulsion and Motion Control Systems of Ships and Ocean Structures
,
Department of Marine Technology, NTNU
,
Trondheim, Norway
.
38.
Faltinsen
,
O.
,
1990
,
Sea Loads on Ships and Offshore Structures
,
Cambridge University Press
,
Cambridge, UK
.
39.
Folb
,
R.
, and
Nelligan
,
J.
,
1983
, “
Hydrodynamic Loading on Armored Towcables
,” David W. Taylor Naval Ship Research and Development Center, Technical Report DTNSRDC/SPD 1030-01.
40.
Gobat
,
J.
, and
Grosenbaugh
,
M.
,
2001
, “
Application of the Generalized-α Method to the Time Integration of the Cable Dynamics Equations
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
37–38
), pp.
4817
4829
. 10.1016/S0045-7825(00)00349-2
41.
Gobat
,
J.
, and
Grosenbaugh
,
M.
,
2006
, “
Time-Domain Numerical Simulation of Ocean Cable Structures
,”
Ocean Eng.
,
33
(
10
), pp.
1373
1400
. 10.1016/j.oceaneng.2005.07.012
42.
Ferry
,
N.
,
Parent
,
L.
,
Masina
,
S.
,
Storto
,
A.
,
Zuo
,
H.
, and
Balmaseda
,
M.
,
2016
,
Product User Manual for the Global Ocean Physical Reanalysis product GLOBAL_REANALYSIS_ PHY_001_030
, https://cmems-resources.cls.fr/documents/PUM/CMEMS-GLO-PUM-001-030.pdf
You do not currently have access to this content.