Abstract

Simulations are conducted in time domain to investigate the dynamic response of a spar-type floating offshore wind turbine (FOWT) under the freak wave scenarios. Toward this end, a coupled aero-hydro-mooring in-house numerical code is adopted to perform the simulations. The methodology includes a blade-element-momentum (BEM) model for simulating the aerodynamic loads, a nonlinear model for simulating the hydrodynamic loads, a nonlinear restoring model of Spar buoy, and a nonlinear algorithm for simulating the mooring cables. The OC3 Hywind spar-type FOWT is adopted as an example to study the dynamic response under the freak wave conditions, meanwhile the time series of freak waves are generated using the random frequency components selection phase modulation method. The motion of platform, the tension applied on the mooring lines, and the power generation performance are documented in several cases. According to the simulations, it is indicated that when a freak wave acts on the FOWT, the transient motion of the FOWT is induced in all degrees-of-freedom, as well as the produced power decreases rapidly. Furthermore, the impact of freak wave parameters on the motion of FOWT is discussed.

References

References
1.
Dong
,
X.
,
Lian
,
J.
,
Wang
,
H.
,
Yu
,
T.
, and
Zhao
,
Y.
,
2018
, “
Structural Vibration Monitoring and Operational Modal Analysis of Offshore Wind Turbine Structure
,”
Ocean Eng.
,
150
, pp.
280
297
. 10.1016/j.oceaneng.2017.12.052
2.
Campanile
,
A.
,
Piscopo
,
V.
, and
Scamardella
,
A.
,
2018
, “
Mooring Design and Selection for Floating Offshore Wind Turbines on Intermediate and Deep Water Depths
,”
Ocean Eng.
,
148
, pp.
349
360
. 10.1016/j.oceaneng.2017.11.043
3.
Li
,
H.
,
Hu
,
Z.
,
Wang
,
J.
, and
Meng
,
X.
,
2018
, “
Short-term Fatigue Analysis for Tower Base of a Spar-Type Wind Turbine Under Stochastic Wind-Wave Loads
,”
Int. J. Nav. Arch. Ocean Eng.
,
10
(
1
), pp.
9
20
. 10.1016/j.ijnaoe.2017.05.003
4.
Coulling
,
A. J.
,
Goupee
,
A. J.
,
Robertson
,
A. N.
,
Jonkman
,
J. M.
, and
Dagher
,
H. J.
,
2013
, “
Validation of a FAST Semi-Submersible Floating Wind Turbine Numerical Model With DeepCwind Test Data
,”
J. Renewable Sustainable Energy
,
5
(
2
), p.
023116
. 10.1063/1.4796197
5.
Abrashkin
,
A.
, and
Soloviev
,
A.
,
2013
, “
Vortical Freak Waves in Water Under External Pressure Action
,”
Phys. Rev. Lett.
,
110
(
1
), p.
014501
. 10.1103/PhysRevLett.110.014501
6.
Hu
,
Z.
,
Tang
,
W.
, and
Xue
,
H.
,
2014
, “
A Probability-Based Superposition Model of Freak Wave Simulation
,”
Appl. Ocean Res.
,
47
, pp.
284
290
. 10.1016/j.apor.2014.05.007
7.
Xia
,
W.
,
Ma
,
Y.
, and
Dong
,
G.
,
2015
, “
Numerical Simulation of Freak Waves in Random Sea State
,”
Procedia Eng.
,
116
, pp.
366
372
. 10.1016/j.proeng.2015.08.300
8.
Chabchoub
,
A.
,
Hoffmann
,
N.
,
Onorato
,
M.
,
Slunyaev
,
A.
,
Sergeeva
,
A.
,
Pelinovsky
,
E.
, and
Akhmediev
,
N.
,
2012
, “
Observation of a Hierarchy of up to Fifth-Order Rogue Waves in a Water Tank
,”
Phys. Rev. E
,
86
(
5
), p.
056601
. 10.1103/PhysRevE.86.056601
9.
Qin
,
H.
,
Mu
,
L.
,
Tang
,
W.
, and
Hu
,
Z.
,
2019
, “
Numerical Study of the Interaction Between Peregrine Breather Based Freak Waves and Twin-Plate Breakwater
,”
J. Fluids Struct.
,
87
, pp.
206
227
. 10.1016/j.jfluidstructs.2019.04.003
10.
Deng
,
Y.
,
Yang
,
J.
,
Zhao
,
W.
,
Li
,
X.
, and
Xiao
,
L.
,
2016
, “
Freak Wave Forces on a Vertical Cylinder
,”
Coastal Eng.
,
114
, pp.
9
18
. 10.1016/j.coastaleng.2016.03.007
11.
Cui
,
C.
,
Zhang
,
N. C.
,
Zuo
,
S. H.
, and
Fang
,
Z.
,
2013
, “
A Study on Kinematics Characteristics of Freak Wave
,”
China Ocean Eng.
,
27
(
3
), pp.
391
402
. 10.1007/s13344-013-0034-8
12.
Mukherjee
,
A.
, and
Kundu
,
A.
,
2019
, “
Novel Nonlinear Wave Equation: Regulated Rogue Waves and Accelerated Soliton Solutions
,”
Phys. Lett. A
,
383
(
10
), pp.
985
990
. 10.1016/j.physleta.2018.12.023
13.
Zhou
,
Y.
,
Xiao
,
Q.
,
Liu
,
Y.
,
Incecik
,
A.
, and
Peyrard
,
C.
,
2019
, “
Investigation of Focused Wave Impact on Floating Platform for Offshore Floating Wind Turbine: A CFD Study
,”
ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering
, OMAE2019-96043. 10.1115/omae2019-96043
14.
Deng
,
Y.
,
Yang
,
J.
,
Tian
,
X.
,
Li
,
X.
, and
Xiao
,
L.
,
2016
, “
An Experimental Study on Deterministic Freak Waves: Generation, Propagation and Local Energy
,”
Ocean Eng.
,
118
, pp.
83
92
. 10.1016/j.oceaneng.2016.02.025
15.
Doong
,
D. J.
,
Peng
,
J. P.
, and
Chen
,
Y. C.
,
2018
, “
Development of a Warning Model for Coastal Freak Wave Occurrences Using an Artificial Neural Network
,”
Ocean Eng.
,
169
, pp.
270
280
. 10.1016/j.oceaneng.2018.09.029
16.
Zhao
,
Y. P.
,
Bi
,
C. W.
,
Sun
,
X. X.
, and
Dong
,
G. H.
,
2019
, “
A Prediction on Structural Stress and Deformation of Fish Cage in Waves Using Machine-Learning Method
,”
Aquac. Eng.
,
85
, pp.
15
21
. 10.1016/j.aquaeng.2019.01.003
17.
Zaranezhad
,
A.
,
Mahabadi
,
H. A.
, and
Dehghani
,
M. R.
,
2019
, “
Development of Prediction Models for Repair and Maintenance-Related Accidents at Oil Refineries Using Artificial Neural Network, Fuzzy System, Genetic Algorithm, and Ant Colony Optimization Algorithm
,”
Process Saf. Environ. Prot.
,
131
, pp.
331
348
. 10.1016/j.psep.2019.08.031
18.
Qin
,
H.
,
Tang
,
W.
,
Xue
,
H.
,
Hu
,
Z.
, and
Guo
,
J.
,
2017
, “
Numerical Study of Wave Impact on the Deck-House Caused by Freak Waves
,”
Ocean Eng.
,
133
, pp.
151
169
. 10.1016/j.oceaneng.2017.01.023
19.
Zhao
,
X.
,
Ye
,
Z.
,
Fu
,
Y.
, and
Cao
,
F.
,
2014
, “
A CIP-Based Numerical Simulation of Freak Wave Impact on a Floating Body
,”
Ocean Eng.
,
87
, pp.
50
63
. 10.1016/j.oceaneng.2014.05.009
20.
Zhou
,
Y.
,
Xiao
,
Q.
,
Liu
,
Y.
,
Incecik
,
A.
,
Peyrard
,
C.
,
Li
,
S.
, and
Pan
,
G.
,
2019
, “
Numerical Modelling of Dynamic Responses of a Floating Offshore Wind Turbine Subject to Focused Waves
,”
Energies
,
12
(
18
), p.
3482
. 10.3390/en12183482
21.
Qin
,
H.
,
Tang
,
W.
,
Hu
,
Z.
, and
Guo
,
J.
,
2017
, “
Structural Response of Deck Structures on the Green Water Event Caused by Freak Waves
,”
J. Fluids Struct.
,
68
, pp.
322
338
. 10.1016/j.jfluidstructs.2016.11.009
22.
Rudman
,
M.
, and
Cleary
,
P. W.
,
2013
, “
Rogue Wave Impact on a Tension Leg Platform: The Effect of Wave Incidence Angle and Mooring Line Tension
,”
Ocean Eng.
,
61
, pp.
123
138
. 10.1016/j.oceaneng.2013.01.006
23.
Pan
,
W.
,
Zhang
,
N.
,
Huang
,
G.
, and
Ma
,
X.
,
2018
, “
Experimental Study on Motion Responses of a Moored Rectangular Cylinder Under Freak Waves (I: Time-Domain Study)
,”
Ocean Eng.
,
153
, pp.
268
281
. 10.1016/j.oceaneng.2018.01.084
24.
Cheng
,
P.
,
Huang
,
Y.
, and
Wan
,
D.
,
2019
, “
A Numerical Model for Fully Coupled Aero-Hydrodynamic Analysis of Floating Offshore Wind Turbine
,”
Ocean Eng.
,
173
, pp.
183
196
. 10.1016/j.oceaneng.2018.12.021
25.
Li
,
Y.
,
Zhu
,
Q.
,
Liu
,
L.
, and
Tang
,
Y.
,
2018
, “
Transient Response of a Spar-Type Floating Offshore Wind Turbine With Fractured Mooring Lines
,”
Renewable Energy
,
122
, pp.
576
588
. 10.1016/j.renene.2018.01.067
26.
Li
,
Y.
,
Le
,
C.
,
Ding
,
H.
,
Zhang
,
P.
, and
Zhang
,
J.
,
2019
, “
Dynamic Response for a Submerged Floating Offshore Wind Turbine With Different Mooring Configurations
,”
J. Mar. Sci. Eng.
,
7
(
4
), p.
115
. 10.3390/jmse7040115
27.
Li
,
Y.
,
Liu
,
L.
,
Zhu
,
Q.
,
Guo
,
Y.
,
Hu
,
Z.
, and
Tang
,
Y.
,
2018
, “
Influence of Vortex-Induced Loads on the Motion of Spar-Type Wind Turbine: A Coupled Aero-Hydro-Vortex-Mooring Investigation
,”
ASME J. Offshore Mech. Arct. Eng.
,
140
(
5
), p.
051903
. 10.1115/1.4040048
28.
Jonkman
,
J.
,
Butterfield
,
S.
,
Musial
,
W.
, and
Scott
,
G.
,
2009
, “
Definition of a 5-MW Reference Wind Turbine for Offshore System Development
,”
National Renewable Energy Laboratory, Golden, CO
, Technical Report No. NREL/TP-500-38060.
29.
Salehyar
,
S. S.
,
2017
, “
Fully-Coupled Time-Domain Simulations of the Transient Response of Floating Wind Turbines
,”
Ph.D. dissertation
,
University of California San Diego
.
30.
Jonkman
,
J.
,
2009
, “
Definition of the Floating System for Phase IV of OC3
,”
National Renewable Energy Laboratory, Golden, CO
, Technical Report No. NREL/TP-500-47535.
31.
Li
,
J.
,
Tang
,
Y.
, and
Yeung
,
R. W.
,
2014
, “
Effects of Second-Order Difference-Frequency Wave Forces on a new Floating Platform for an Offshore Wind Turbine
,”
J. Renewable Sustainable Energy
,
6
(
3
), p.
033102
. 10.1063/1.4872360
32.
Journée
,
J. M. J.
, and
Massie
,
W. W.
,
2000
,
Offshore Hydromechanics
,
Delft University of Technology
,
Delft, The Netherlands
.
33.
Kharif
,
C.
,
Pelinovsky
,
E.
,
Talipova
,
T.
, and
Slunyaev
,
A.
,
2001
, “
Focusing of Nonlinear Wave Groups in Deep Water
,”
J. Exp. Theor. Phys. Lett.
,
73
(
4
), pp.
170
175
. 10.1134/1.1368708
34.
Boccotti
,
P.
,
2011
, “
Field Verification of Quasi-Determinism Theory for Wind Waves in the Space–Time Domain
,”
Ocean Eng.
,
38
(
13
), pp.
1503
1507
. 10.1016/j.oceaneng.2011.07.015
35.
Mirzadeh
,
J.
,
Kimiaei
,
M.
, and
Cassidy
,
M. J.
,
2016
, “
Effects of Irregular Nonlinear Ocean Waves on the Dynamic Performance of an Example Jack-up Structure During an Extreme Event
,”
Mar. Struct.
,
49
, pp.
148
162
. 10.1016/j.marstruc.2016.05.007
36.
Ruzzo
,
C.
, and
Arena
,
F.
,
2018
, “
A Numerical Study on the Dynamic Response of a Floating Spar Platform in Extreme Waves
,”
J. Mar. Sci. Technol.
,
24
(
4
), pp.
1135
1152
. 10.1007/s00773-018-0612-9
37.
Tang
,
Y. G.
,
Li
,
Y.
,
Wang
,
B.
,
Liu
,
S. X.
, and
Zhu
,
L. H.
,
2016
, “
Dynamic Analysis of Turret-Moored FPSO System in Freak Wave
,”
China Ocean Eng.
,
30
(
4
), pp.
521
534
. 10.1007/s13344-016-0032-8
38.
Klinting
,
P.
, and
Sand
,
S. E.
,
1987
, “
Analysis of Prototype Freak Waves
,”
ASCE Special Conference Nearshore Hydrodynamics
,
January
,
OH
, pp.
618
632
.
39.
Clauss
,
G. F.
,
Schmittner
,
C. E.
, and
Hennig
,
J.
,
2008
, “
Systematically Varied Rogue Wave Sequences for the Experimental Investigation of Extreme Structure Behavior
,”
ASME J. Offshore Mech. Arct. Eng.
,
130
(
2
), p.
021009
. 10.1115/1.2913598
40.
Gu
,
J.
,
Lv
,
H.
, and
Yang
,
J.
,
2013
, “
Dynamic Response Study of Four Column TLP in Freak Waves
,”
Ocean Eng.
,
31
(
5
), pp.
25
36
.
41.
Li
,
W.
,
Tang
,
Y. G.
,
Liu
,
L. Q.
,
Li
,
Y.
, and
Wang
,
B.
,
2017
, “
Internal Resonances for Heave, Roll and Pitch Modes of a Spar Platform Considering Wave and Vortex-Induced Loads in the Main Roll Resonance
,”
China Ocean Eng.
,
31
(
4
), pp.
408
417
. 10.1007/s13344-017-0047-9
42.
Duan
,
F.
,
Hu
,
Z.
,
Liu
,
G.
, and
Wang
,
J.
,
2016
, “
Experimental Comparisons of Dynamic Properties of Floating Wind Turbine Systems Based on Two Different Rotor Concepts
,”
Appl. Ocean Res.
,
58
, pp.
266
280
. 10.1016/j.apor.2016.04.012
43.
Duan
,
F.
,
Hu
,
Z.
, and
Niedzwecki
,
J. M.
,
2016
, “
Model Test Investigation of a Spar Floating Wind Turbine
,”
Mar. Struct.
,
49
, pp.
76
96
. 10.1016/j.marstruc.2016.05.011
44.
Li
,
J.
,
Yang
,
J.
,
Liu
,
S.
, and
Ji
,
X.
,
2015
, “
Wave Groupiness Analysis of the Process of 2D Freak Wave Generation in Random Wave Trains
,”
Ocean Eng.
,
104
, pp.
480
488
. 10.1016/j.oceaneng.2015.05.034
45.
Salehyar
,
S.
,
Li
,
Y.
, and
Zhu
,
Q.
,
2017
, “
Fully-coupled Time-Domain Simulations of the Response of a Floating Wind Turbine to Non-Periodic Disturbances
,”
Renewable Energy
,
111
, pp.
214
226
. 10.1016/j.renene.2017.04.017
46.
Schmittner
,
C.
, and
Hennig
,
J.
,
2012
, “
Optimization of Short-Crested Deterministic Wave Sequences via a Phase-Amplitude Iteration Scheme
,”
ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering
,
Rio de Janeiro, Brazil
,
July 1–6
, pp.
79
86
. 10.1115/omae2012-83150
47.
Houtani
,
H.
,
Waseda
,
T.
,
Fujimoto
,
W.
,
Kiyomatsu
,
K.
, and
Tanizawa
,
K.
,
2018
, “
Generation of a Spatially Periodic Directional Wave Field in a Rectangular Wave Basin Based on Higher-Order Spectral Simulation
,”
Ocean Eng.
,
169
, pp.
428
441
. 10.1016/j.oceaneng.2018.09.024
48.
Klein
,
M.
,
Clauss
,
G. F.
,
Rajendran
,
S.
,
Soares
,
C. G.
, and
Onorato
,
M.
,
2016
, “
Peregrine Breathers as Design Waves for Wave-Structure Interaction
,”
Ocean Eng.
,
128
, pp.
199
212
. 10.1016/j.oceaneng.2016.09.042
49.
Nangia
,
N.
,
Patankar
,
N. A.
, and
Bhalla
,
A. P. S.
,
2019
, “
A DLM Immersed Boundary Method Based Wave-Structure Interaction Solver for High Density Ratio Multiphase Flows
,”
J. Comput. Phys.
,
398
, p.
108804
. 10.1016/j.jcp.2019.07.004
50.
Choi
,
W.
, and
Park
,
H.
,
2019
, “
Optimized Design and Analysis of Composite Flexible Wing Using Aero-Nonlinear Structure Interaction
,”
Compos. Struct.
,
225
, p.
111027
. 10.1016/j.compstruct.2019.111027
51.
Cao
,
Y.
,
Zavala
,
V. M.
, and
D’Amato
,
F.
,
2018
, “
Using Stochastic Programming and Statistical Extrapolation to Mitigate Long-Term Extreme Loads in Wind Turbines
,”
Appl. Energy
,
230
, pp.
1230
1241
. 10.1016/j.apenergy.2018.09.062
52.
Li
,
X.
, and
Zhang
,
W.
,
2020
, “
Long-term Assessment of a Floating Offshore Wind Turbine Under Environmental Conditions With Multivariate Dependence Structures
,”
Renewable Energy
,
147
, pp.
764
775
. 10.1016/j.renene.2019.09.076
You do not currently have access to this content.