Abstract

The power potential in the waves that hit all the coasts worldwide has been estimated to be of the order of 1 TW. Each wave crest transmits 10–50 kW/m of energy, which is 15–20 times higher than wind or solar energies. The availability of wave energy is 90% compared to 30% for wind and solar energies. The oscillating water column (OWC), which is the most investigated wave energy converter consists of a partially submerged hollow structure positioned either vertically or inclined. The bidirectional airflow above the water column drives a turbine. The conventional OWCs experience flow separation at the sharp corners of the chamber. To address this issue, researchers have proposed inclining the chamber at an angle with respect to the incident waves to improve the flow characteristics. In the present work, the effect of OWC inclination on rotor performance is studied using the computational fluid dynamics (CFD) code ansys-cfx. The results highlight that the 55 deg inclined OWC showed improved performance compared to the conventional OWC and modified OWC (optimized in a previous work). The maximum power for the inclined OWC was 13% higher than that for the rotor in the modified OWC and 28% than that in the conventional OWC at mean wave condition. The 55 deg inclined OWC recorded peak rotor power of 23.2 kW with an efficiency of 27.6% at the mean sea state. The peak power and efficiency at maximum sea state were 26.5 kW and 21.5%, respectively.

References

References
1.
Stocker
,
T. F.
,
Qin
,
D.
,
Plattner
,
G. K.
,
Tignor
,
M. M. M. B.
,
Allen
,
S. K.
,
Boschung
,
J.
,
Nauels
,
A.
,
Xia
,
Y.
,
Bex
,
V.
and
Midgley
,
P. M.
, eds.,
2013
, “Climate Change 2013: The Physical Science Basis,”
IPCC 2013—Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
,
Cambridge
:
Cambridge University Press
, p.
1535
.
2.
Panicker
,
N. N.
,
1976
, “
Power Resource Potential of Ocean Surface Waves
,”
Ocean Eng.
,
3
(
6
), pp.
429
439
. https://doi.org/10.1016/0029-8018
3.
Sundar
,
V.
,
2015
,
Ocean Wave Mechanics—Applications in Marine Structures
,
John Wiley & Sons Limited
,
New York
.
4.
Ram
,
K. R.
,
Ahmed
,
M. R.
,
Zullah
,
M. A.
, and
Lee
,
Y. H.
,
2016
, “
Experimental Studies on the Flow Characteristics in an Inclined Bend Free OWC Device
,”
J. Ocean Eng. Sci.
,
1
(
1
), pp.
77
83
. 10.1016/j.joes.2015.12.003
5.
Patel
,
S. K.
,
Ram
,
K. R.
,
Ahmed
,
M. R.
, and
Lee
,
Y. H.
,
2011
, “
Performance Studies on an Oscillating Water Column Employing a Savonius Rotor
,”
Sci. China Technol. Sci.
,
54
(
7
), pp.
1674
1679
. 10.1007/s11431-011-4407-z
6.
Iino
,
M.
,
Miyazaki
,
T.
,
Segawa
,
H.
, and
Iida
,
M.
,
2016
, “
Effect of Inclination on Oscillation Characteristics of an Oscillating Water Column Wave Energy Converter
,”
Ocean Eng.
,
116
, pp.
226
235
. 10.1016/j.oceaneng.2016.03.014
7.
Prasad
,
D. D.
,
Ahmed
,
M. R.
, and
Lee
,
Y. H.
,
2018
, “
Performance Improvement of an Oscillating Water Column Wave Energy Converter by Geometry Modification
,”
J. Mech. Sci. Technol.
,
32
(
12
), pp.
5729
5736
. 10.1007/s12206-018-1120-x
8.
Ram
,
K.
,
Narayan
,
S.
,
Ahmed
,
M. R.
,
Nakavulevu
,
P.
, and
Lee
,
Y. H.
,
2014
, “
In Situ Near-Shore Wave Resource Assessment in the Fiji Islands
,”
Energy Sustainable Dev.
,
23
, pp.
170
178
. 10.1016/j.esd.2014.09.002
9.
Prasad
,
D. D.
,
Ahmed
,
M. R.
,
Lee
,
Y. H.
, and
Sharma
,
R. N.
,
2017
, “
Validation of a Piston Type Wave-Maker Using Numerical Wave Tank
,”
Ocean Eng.
,
131
, pp.
57
67
. 10.1016/j.oceaneng.2016.12.031
10.
Prasad
,
D. D.
,
Kim
,
C. G.
,
Kang
,
H. G.
,
Ahmed
,
M. R.
, and
Lee
,
Y. H.
,
2017
, “
Performance and Flow Characteristics of Single and a Novel Double Oscillating Water Column Devices
,”
J. Mech. Sci. Technol.
,
31
(
12
), pp.
5879
5886
. 10.1007/s12206-017-1131-z
11.
Lakshmynarayanana
,
P. A.
,
Temarel
,
P.
, and
Chen
,
Z.
,
2015
, “
Hydroelastic Analysis of a Flexible Barge in Regular Waves Using Coupled CFD-FEM Modelling
,”
Proceedings of the 5th International Conference on Marine Structures (MARSTRUCT)
,
Southampton, UK
,
Mar. 25–27
, pp.
95
103
.
12.
Lal
,
A.
, and
Elangovan
,
M.
,
2008
, “
CFD Simulation and Validation of Flap Type Wave-Maker
,”
World Acad. Sci. Eng. Technol.
,
46
, pp.
76
82
.
13.
Maguire
,
A. E.
,
2011
, “
Hydrodynamics, Control and Numerical Modelling of Absorbing Wavemakers
,”
PhD dissertation
,
The University of Edinburgh
,
Edinburgh, UK
.
14.
Falnes
,
J.
,
2002
,
Ocean Waves and Oscillating Systems
,
Cambridge University Press
,
Cambridge, UK
.
15.
Finnegan
,
W.
, and
Goggins
,
J.
,
2012
, “
Numerical Simulation of Linear Water Waves and Wave-Structure Interaction
,”
Ocean Eng.
,
43
, pp.
23
31
. 10.1016/j.oceaneng.2012.01.002
16.
Elangovan
,
M.
,
2011
, “
Simulation of Irregular Waves by CFD
,”
World Acad. Sci. Eng. Technol.—Int. J. Mech. Aerosp. Ind. Mechatron. Manuf. Eng.
,
5
(
7
), pp.
1379
1383
.
17.
Prasad
,
D. D.
,
Ahmed
,
M. R.
, and
Lee
,
Y. H.
,
2018
, “
Studies on the Performance of Savonius Rotors in a Numerical Wave Tank
,”
Ocean Eng.
,
158
, pp.
29
37
. 10.1016/j.oceaneng.2018.03.084
18.
Zullah
,
M. A.
, and
Lee
,
Y.-H.
,
2013
, “
Performance Evaluation of a Direct Drive Wave Energy Converter Using CFD
,”
Renewable Energy
,
49
, pp.
237
241
. 10.1016/j.renene.2012.01.023
19.
Zullah
,
M. A.
,
Prasad
,
D.
,
Choi
,
Y.
, and
Lee
,
Y.
,
2009
, “
Study on the Performance of Helical Savonius Rotor for Wave Energy Conversion
,”
Proceedings of the 10th Asian International Conference on Fluid Machinery
,
Kuala Lumpur, Malaysia
,
Oct. 21–23
,
Paper No. 641
.
20.
Bikas
,
G. S.
,
Ramesh
,
H.
, and
Vijaykumar
,
H.
,
2014
, “
Study on Performance of Savonius Rotor Type Wave Energy Converter Used in Conjunction Conventional Rubble Mound Breaker
,”
Ocean Eng.
,
89
, pp.
62
68
. 10.1016/j.oceaneng.2014.07.015
You do not currently have access to this content.