Abstract

Freak wave is an extreme sea state with unexpected and huge wave height, which becomes a potential risk for lay barge and offshore pipeline during deepwater installation. In order to investigate the dynamic responses of deepwater S-lay pipeline induced by freak waves, this study developed a comprehensive numerical model with the particular consideration of the freak wave effect. An enhanced superposition method of combined transient wave trains and random wave trains was presented, and a series of freak wave trains were generated. The induced pipelay vessel motions were simulated by the use of displacement response amplitude operators (RAOs). The pipe–stinger roller interactions in the overbend and the cyclic contacts between the pipeline and seabed soil in the touchdown zone (TDZ) were fully taken into consideration. The developed S-lay model was subsequently utilized to calculate the dynamic responses of the pipelay vessel and offshore pipeline under random waves and freak waves for a comparison. The results illustrated the remarkable influence of freak waves on the systematic behaviors of deepwater S-laying pipeline, which offer a significant theoretical basis for the pipe structure design and pipelay operation safety.

References

References
1.
Bruschi
,
R.
,
Vitali
,
L.
,
Marchionni
,
L.
,
Parrella
,
A.
, and
Mancini
,
A.
,
2015
, “
Pipe Technology and Installation Equipment for Frontier Deep Water Projects
,”
Ocean Eng.
,
108
, pp.
369
392
. 10.1016/j.oceaneng.2015.08.008
2.
Kjeldsen
,
S. P.
,
2004
, “
Measurements of Freak Waves in Norway and Related Ship Accidents
,”
Royal Institution of Naval Architects International Conference–Design and Operation for Abnormal Conditions III
,
London, UK
,
January
.
3.
Slunyaev
,
A.
,
Didenkulova
,
I.
, and
Pelinovsky
,
E.
,
2011
, “
Rogue Waves in 2006–2010
,”
Nat. Hazard. Earth Syst. Sci.
,
11
(
11
), pp.
2913
2924
. 10.5194/nhess-11-2913-2011
4.
Yun
,
H. D.
,
Peek
,
R. R.
,
Paslay
,
P. R.
, and
Kopp
,
F. F.
,
2004
, “
Loading History Effects for Deep-Water S-Lay of Pipelines
,”
ASME J. Offshore Mech. Arct. Eng.
,
126
(
2
), pp.
156
163
. 10.1115/1.1710871
5.
Gong
,
S. F.
,
Chen
,
K.
,
Chen
,
Y.
,
Jin
,
W. L.
,
Li
,
Z. G.
, and
Zhao
,
D. Y.
,
2011
, “
Configuration Analysis of Deepwater S-Lay Pipeline
,”
China Ocean Eng.
,
25
(
3
), pp.
519
530
. 10.1007/s13344-011-0042-5
6.
Kim
,
H. S.
, and
Kim
,
B. W.
,
2019
, “
An Efficient Linearised Dynamic Analysis Method for Structural Safety Design of J-Lay and S-Lay Pipeline Installation
,”
Ships Offshore Struc.
,
14
(
2
), pp.
204
219
. 10.1080/17445302.2018.1493906
7.
Xie
,
P.
,
Yue
,
Q. J.
, and
Palmer
,
A. C.
,
2013
, “
Cyclic Plastic Deformation of Overbend Pipe During Deepwater S-Lay Operation
,”
Mar. Struct.
,
34
, pp.
74
87
. 10.1016/j.marstruc.2013.08.003
8.
Zhang
,
X. F.
,
Yue
,
Q. J.
, and
Zhang
,
W. S.
,
2015
, “
The Model Test of Deep Water S-Lay Stinger Using Dynamical Substructure Method
,”
ASME J. Offshore Mech. Arct. Eng.
,
137
, p.
011701
. 10.1115/1.4028879
9.
Liang
,
H.
,
Zhao
,
Y.
, and
Yue
,
Q. J.
,
2019
, “
Experimental Study on Dynamic Interaction Between Pipe and Rollers in Deep S-Lay
,”
Ocean Eng.
,
175
, pp.
188
196
. 10.1016/j.oceaneng.2019.01.030
10.
Wang
,
F. C.
,
Chen
,
J.
,
Gao
,
S.
,
Tang
,
K.
, and
Meng
,
X. W.
,
2017
, “
Development and Sea Trial of Real-Time Offshore Pipeline Installation Monitoring System
,”
Ocean Eng.
,
146
, pp.
468
476
. 10.1016/j.oceaneng.2017.09.016
11.
Liang
,
H.
,
Yue
,
Q. J.
,
Lim
,
G.
, and
Palmer
,
A. C.
,
2018
, “
Study on the Contact Behaviour of Pipe and Rollers in Deep S-lay
,”
Appl. Ocean Res.
,
72
, pp.
1
11
. 10.1016/j.apor.2017.12.007
12.
Gong
,
S. F.
, and
Xu
,
P.
,
2017
, “
Influences of Pipe–Soil Interaction on Dynamic Behaviour of Deepwater S-Lay Pipeline Under Random Sea States
,”
Ships Offshore Struc.
,
12
(
3
), pp.
370
387
. 10.1080/17445302.2016.1169632
13.
Torselletti
,
E.
,
Vitali
,
L.
,
Bruschi
,
R.
,
Levold
,
E.
, and
Collberg
,
L.
,
2006
, “
Submarine Pipeline Installation Joint Industry Project: Global Response Analysis of Pipelines During S-Laying
,”
Proceedings of the 25th International Conference on Offshore Mechanics and Arctic Engineering
,
Hamburg, Germany
,
Paper No. OMAE2006-92377
.
14.
Marchionni
,
L.
,
Alessandro
,
L.
, and
Vitali
,
L.
,
2011
, “
Offshore Pipeline Installation: 3-Dimensional Finite Element Modelling
,”
Proceedings of the 30th International Conference on Offshore Mechanics and Arctic Engineering
,
Rotterdam, The Netherlands
,
Paper No. OMAE2011-49832
.
15.
O’Grady
,
R.
, and
Harte
,
A.
,
2013
, “
Localised Assessment of Pipeline Integrity During Ultra-Deep S-Lay Installation
,”
Ocean Eng.
,
68
, pp.
27
37
. 10.1016/j.oceaneng.2013.04.004
16.
Gong
,
S. F.
,
Xu
,
P.
,
Bao
,
S.
,
Zhong
,
W. J.
,
He
,
N.
, and
Yan
,
H.
,
2014
, “
Numerical Modelling on Dynamic Behaviour of Deepwater S-Lay Pipeline
,”
Ocean Eng.
,
88
, pp.
393
408
. 10.1016/j.oceaneng.2014.07.016
17.
Gong
,
S. F.
, and
Xu
,
P.
,
2016
, “
The Influence of Sea State on Dynamic Behaviour of Offshore Pipelines for Deepwater S-Lay
,”
Ocean Eng.
,
111
, pp.
398
413
. 10.1016/j.oceaneng.2015.11.013
18.
Koola
,
P. M.
,
Sundar
,
V.
,
Kaldenhoff
,
H.
, and
Baur
,
R.
,
1996
, “
Pressure Distribution Around Cylinders Due to Freak Waves
,”
Proceedings of the International Conference on Ocean Engineering
,
IIT, Madras, India
, Dec.
17–20
, pp.
189
194
.
19.
Sundar
,
V.
,
Koola
,
P. M.
, and
Schlenkhoff
,
A. U.
,
1999
, “
Dynamic Pressures on Inclined Cylinders Due to Freak Waves
,”
Ocean Eng.
,
26
(
9
), pp.
841
863
. 10.1016/S0029-8018(98)00029-8
20.
Kim
,
N.
, and
Kim
,
C. H.
,
2003
, “
Investigation of a Dynamic Property of Draupner Freak Wave
,”
Int. J. Offshore Polar Eng.
,
13
(
1
), pp.
38
42
.
21.
Westphalen
,
J.
,
Greaves
,
D. M.
,
Williams
,
C. J. K.
,
Hunt-Raby
,
A. C.
, and
Zang
,
J.
,
2012
, “
Focused Waves and Wave-Structure Interaction in a Numerical Wave Tank
,”
Ocean Eng.
,
45
, pp.
9
21
. 10.1016/j.oceaneng.2011.12.016
22.
Zhao
,
X. Z.
, and
Hu
,
C. H.
,
2012
, “
Numerical and Experimental Study on a 2-D Floating Body Under Extreme Wave Conditions
,”
Appl. Ocean Res.
,
35
(
1
), pp.
1
13
. 10.1016/j.apor.2012.01.001
23.
Zhao
,
X. Z.
,
Ye
,
Z. T.
,
Fu
,
Y. N.
, and
Cao
,
F. F.
,
2014
, “
A CIP-Based Numerical Simulation of Freak Wave Impact on a Floating Body
,”
Ocean Eng.
,
87
, pp.
50
63
. 10.1016/j.oceaneng.2014.05.009
24.
Rudman
,
M.
, and
Cleary
,
P. W.
,
2013
, “
Rogue Wave Impact on a Tension Leg Platform: The Effect of Wave Incidence Angle and Mooring Line Tension
,”
Ocean Eng.
,
61
, pp.
123
138
. 10.1016/j.oceaneng.2013.01.006
25.
Tang
,
Y. G.
,
Li
,
Y.
,
Wang
,
B.
,
Liu
,
S. X.
, and
Zhu
,
L. H.
,
2016
, “
Dynamic Analysis of Turret-Moored FPSO System in Freak Wave
,”
China Ocean Eng.
,
30
(
4
), pp.
521
534
. 10.1007/s13344-016-0032-8
26.
Qin
,
H.
,
Tang
,
W. Y.
,
Xue
,
H. X.
, and
Zhu
,
H.
,
2017
, “
Numerical Study of Nonlinear Freak Wave Impact Underneath a Fixed Horizontal Deck in 2-D Space
,”
Appl. Ocean Res.
,
64
, pp.
155
168
. 10.1016/j.apor.2017.02.008
27.
Hasselmann
,
K.
,
Barnett
,
T. P.
,
Bouws
,
E.
,
Carlson
,
H.
,
Cartwright
,
D. E.
,
Enke
,
K.
,
Ewing
,
J. A.
,
Gienapp
,
H.
,
Hasselmann
,
D. E.
,
Kruseman
,
P.
,
Meerburg
,
A.
,
Müller
,
P.
,
Olbers
,
D. J.
,
Richter
,
K.
,
Sell
,
W.
, and
Walden
,
H.
,
1973
, “
Measurements of Wind-wave Growth and Swell Decay During the Joint North Sea Wave Project (JONSWAP)
,”
Deutches Hydrographisches Institute
.
28.
Slunyaev
,
A.
,
Pelinovsky
,
E.
,
Sergeeva
,
A.
,
Chabchoub
,
A.
,
Hoffmann
,
N.
,
Onorato
,
M.
, and
Akhmediev
,
N.
,
2013
, “
Super-Rogue Waves in Simulations Based on Weakly Nonlinear and Fully Nonlinear Hydrodynamic Equations
,”
Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
,
88
(
1
), p.
012909
. 10.1103/PhysRevE.88.012909
29.
Lu
,
W. Y.
,
Yang
,
J. M.
, and
Fu
,
S. X.
,
2017
, “
Numerical Study of the Generation and Evolution of Breather-Type Rogue Waves
,”
Ships Offshore Struc.
,
12
(
1
), pp.
66
76
. 10.1080/17445302.2015.1112177
30.
Zhao
,
X. Z.
,
Sun
,
Z. C.
, and
Liang
,
S. X.
,
2009
, “
Efficient Focusing Models for Generation of Freak Waves
,”
China Ocean Eng.
,
23
(
3
), pp.
429
440
.
31.
Orcina
,
2014
, “
OrcaFlex User Manual, Version 9.7a
,”
Cumbria, UK
.
32.
Wang
,
F. C.
,
Luo
,
Y.
,
Xie
,
Y.
,
Li
,
B.
, and
Li
,
J. N.
,
2014
, “
Practical and Theoretical Assessments of Subsea Installation Capacity for HYSY 201 Laybarge According to Recent Project Performances in South China Sea
,”
Proceedings of the Annual Offshore Technology Conference
,
Houston, TX
,
May 5–8
, Vol.
4
, pp.
2696
2704
.
33.
Randolph
,
M. F.
, and
Quiggin
,
P.
,
2009
, “
Non-Linear Hysteretic Seabed Model for Catenary Pipeline Contact
,”
Proceedings of the 28th International Conference on Ocean, Offshore and Arctic Engineering
,
Honolulu, Hawaii
,
Paper No. OMAE2009-79259
.
34.
Klinting
,
P.
, and
Sand
,
S. E.
,
1987
, “
Analysis of Prototype Freak Waves
,”
Conference of Coastal Hydrodynamics
,
New York
,
January
, pp.
618
632
.
35.
Yuan
,
F.
,
Guo
,
Z.
,
Li
,
L. L.
, and
Wang
,
L. Z.
,
2012
, “
Numerical Model for Pipeline Laying During S-Lay
,”
ASME J. Offshore Mech. Arct. Eng.
,
134
(
2
), p.
021703
. 10.1115/1.4004628
36.
Randolph
,
M. F.
, and
White
,
D. J.
,
2008
, “
Pipeline Embedment in Deep Water: Processes and Quantitative Assessment
,”
Proceedings of the Offshore Technology Conference
,
Houston, TX
,
Paper No. OTC 19128
.
37.
White
,
D. J.
, and
Cheuk
,
C. Y.
,
2008
, “
Modelling the Soil Resistance on Seabed Pipelines During Large Cycles of Lateral Movement
,”
Mar. Struct.
,
21
(
1
), pp.
59
79
. 10.1016/j.marstruc.2007.05.001
38.
DNV
,
G. L.
,
2017
, “
Submarine Pipeline Systems
,”
Offshore Standard DNVGL-ST-F101
.
You do not currently have access to this content.