Abstract

The dynamic arc behaviors have a significant effect on the process stability and welded joint quality in underwater wet flux-cored arc welding (FCAW). In this study, clear underwater arc images are obtained by using a high-speed camera, which further reveal the complex physical process of underwater wet welding. The mechanism of underwater contact arc ignition is described in detail. Gas ionization and electron emission processes are carried out in bubbles generated by resistance heat. The dynamic arc behaviors are obviously different between bubble growth and separation stages. The high-speed gas flow in the bubble separation stage has a great disturbance to the arc. The arc shapes under water and in air under the same parameters are compared, and the mechanism of arc column shrinkage and arc length shortening is revealed from the aspects of water environment cooling, gas composition in bubbles, disturbance of gas flow, water pressure, and electric field strength.

References

References
1.
Liu
,
S.
,
Olson
,
D. L.
, and
Ibarra
,
S.
,
1993
,
Welding, Brazing, and Soldering—ASM Handbook
, Vol. 6,
ASM International
,
Ohio
, pp.
1010
1015
.
2.
Yang
,
Q. Y.
,
Han
,
Y. F.
,
Jia
,
C. B.
,
Wu
,
J. F.
,
Dong
,
S. F.
, and
Wu
,
C. S.
,
2019
, “
Impeding Effect of Bubbles on Metal Transfer in Underwater Wet FCAW
,”
J. Manuf. Processes
,
45
, pp.
682
689
. 10.1016/j.jmapro.2019.08.013
3.
Sanchez-Osio
,
A.
,
Liu
,
S.
,
Olson
,
D. L.
, and
Ibarra
,
S.
,
1995
, “
Designing Shielded Metal Arc Consumables for Underwater Wet Welding in Offshore Applications
,”
ASME J. Offshore Mech. Arct. Eng.
,
117
(
3
), pp.
212
220
. 10.1115/1.2827092
4.
Guo
,
N.
,
Fu
,
Y.
,
Feng
,
J.
,
Du
,
Y.
,
Deng
,
Z.
,
Wang
,
M.
, and
Tang
,
D.
, “
Classification of Metal Transfer Mode in Underwater Wet Welding
,”
Weld. J.
,
95
(
4
), pp.
133S
140S
.
5.
Yushchenko
,
K. A.
,
Gretskii
,
Y. Y.
, and
Maksimov
,
S. Y.
,
1998
,
Underwater wet welding and cuttingwater Wet Welding and Cutting
,
Woodhead
,
Cambridge
, pp.
6
29
.
6.
Świerczyńska
,
A.
,
Fydrych
,
D.
, and
Rogalski
,
G.
,
2017
, “
Diffusible Hydrogen Management in Underwater Wet Self-Shielded Flux Cored Arc Welding
,”
Int. J. Hydrogen Energy
,
42
(
38
), pp.
24532
24540
. 10.1016/j.ijhydene.2017.07.225
7.
Terán
,
G.
,
Cuamatzi-Meléndez
,
R.
,
Albiter
,
A.
,
Maldonado
,
C.
, and
Bracarense
,
A. Q.
,
2014
, “
Characterization of the Mechanical Properties and Structural Integrity of T-Welded Connections Repaired by Grinding and Wet Welding
,”
Mater. Sci. Eng., A
,
599
, pp.
105
115
. 10.1016/j.msea.2014.01.078
8.
Han
,
Y. F.
,
Dong
,
S. F.
,
Zhang
,
M. X.
,
Jia
,
C. B.
,
Zhang
,
M. F.
, and
Wu
,
C. S.
,
2019
, “
A Novel Underwater Submerged-Arc Welding Acquires Sound Quality Joints for High Strength Marine Steel
,”
Mater. Lett.
,
127075
(
2020
).
9.
Ghadimi
,
P.
,
Ghassemi
,
H.
,
Ghassabzadeh
,
M.
, and
Kiaei
,
Z.
,
2013
, “
Three Dimensional Simulation of Underwater Welding and Investigation of Effective Parameters
,”
Weld. J.
,
92
(
8
), pp.
239
249
.
10.
Zhao
,
B.
,
Chen
,
J.
,
Jia
,
C. B.
, and
Wu
,
C. S.
,
2018
, “
Numerical Analysis of Molten Pool Behavior During Underwater Wet FCAW Process
,”
J. Manuf. Processes
,
32
, pp.
538
552
. 10.1016/j.jmapro.2018.03.020
11.
Zielińska
,
S.
,
Musioł
,
K.
,
Dzierżęga
,
K.
,
Pellerin
,
S.
,
Valensi
,
F.
,
de Izarra
,
C.
, and
Briand
,
F.
,
2007
, “
Investigations of GMAW Plasma by Optical Emission Spectroscopy
,”
Plasma Sources Sci. Technol.
,
16
(
4
), pp.
832
838
. 10.1088/0963-0252/16/4/019
12.
Li
,
Z. G.
,
Zhang
,
H.
, and
Jia
,
J. P.
,
2009
, “
Plasma Component Calculation in Underwater Wet Welding
,”
Trans. Chin. Weld. Inst.
,
30
(
4
), pp.
13
16
.
13.
Jia
,
C. B.
,
Zhang
,
T.
,
Maksimov
,
S. Y.
, and
Yuan
,
X.
,
2013
, “
Spectroscopic Analysis of the Arc Plasma of Underwater Wet Flux-Cored Arc Welding
,”
J. Mater. Process. Technol.
,
213
(
8
), pp.
1370
1377
. 10.1016/j.jmatprotec.2013.02.013
14.
Zhang
,
Y.
,
Jia
,
C. B.
,
Zhao
,
B.
,
Hu
,
J. K.
, and
Wu
,
C. S.
,
2016
, “
Heat Input and Metal Transfer Influences on the Weld Geometry and Microstructure During Underwater Wet FCAW
,”
J. Mater. Process. Technol.
,
238
, pp.
373
382
. 10.1016/j.jmatprotec.2016.07.024
15.
Jia
,
C. B.
,
Zhang
,
Y.
,
Zhao
,
B.
,
Hu
,
J. K.
, and
Wu
,
C. S.
,
2016
, “
Visual Sensing of the Physical Process During Underwater Wet FCAW
,”
Weld. J.
,
95
(
6
), pp.
202
209
.
16.
Chen
,
H.
,
Guo
,
N.
,
Shi
,
X. H.
,
Du
,
Y. P.
,
Feng
,
J. C.
, and
Wang
,
G. D.
,
2018
, “
Effect of Water Flow on the Arc Stability and Metal Transfer in Underwater Flux-Cored Wet Welding
,”
J. Manuf. Processes
,
31
, pp.
103
115
. 10.1016/j.jmapro.2017.11.010
17.
Oliveira
,
F. D. R.
,
Soares
,
W. R.
, and
Bracarense
,
A. Q.
,
2015
, “
Study Correlating the Bubble Phenomenon and Electrical Signals in Underwater Wet Welding with Covered Electrodes
,”
Weld. Int.
,
29
(
5
), pp.
363
371
. 10.1080/09507116.2014.932980
18.
Feng
,
J. C.
,
Wang
,
J. F.
,
Sun
,
Q. J.
,
Zhao
,
H. Y.
,
Wu
,
L. J.
, and
Xu
,
P. W.
,
2017
, “
Investigation on Dynamic Behaviors of Bubble Evolution in Underwater Wet Flux-Cored Arc Welding
,”
J. Manuf. Processes
,
28
, pp.
156
167
. 10.1016/j.jmapro.2017.06.003
19.
Moran
,
M. J.
,
Shapiro
,
H. N.
,
Boettner
,
D. D.
, and
Bailey
,
M. B.
,
2010
,
Fundamentals of Engineering Thermodynamics
,
John Wiley & Sons
,
New York
.
20.
Kou
,
S.
,
2003
,
Welding Metallurgy
, 2nd ed.,
Wiley Interscience
,
New York
.
21.
Guo
,
W.
,
Guo
,
N.
,
Du
,
Y. P.
,
Wang
,
J. F.
, and
Feng
,
J. C.
,
2016
, “
Effect of Different Underwater Environment Media on Composition and Temperature of Underwater Welding Arc Plasma
,”
Trans. Chin. Weld. Inst.
,
37
, pp.
13
16
.
22.
Wu
,
C. S.
,
2011
,
Welding Thermal Processes and Weld Pool Behaviors
,
CRC Press/China Machine Press
, Boca Raton, FL
.
You do not currently have access to this content.