Abstract

Tsunami waves pose a threat to the coastal zone, and numerous studies have been carried out in the past to understand them. Solitary waves have been extensively used in research because they approximate certain important characteristics of tsunami waves. The present study focusses on the interaction and run-up of solitary waves on coastal protection structures in the form of thin, rigid vertical porous barriers with special attention given to the degree of energy dissipation. To understand the physics of energy dissipation, solitary wave interaction with a porous barrier has been studied from the viewpoint of energy balance. Based on this, a relationship for the wave energy dissipation has been developed. The experimental data show that the plate porosity that gives the optimal energy dissipation lies within the 10–20% range. From the experiments, the phase shift that the solitary wave undergoes upon interaction with the porous barrier models has also been recorded. In addition, a formula is proposed for maximum wave run-up on the porous barrier, which should be useful in the planning, design, construction, and maintenance of coastal protection structures.

References

References
1.
Mani
,
J.
, and
Jayakumar
,
S.
,
1995
, “
Wave Transmission by Suspended Pipe Breakwater
,”
J. Waterway Port Coast. Ocean Eng.
,
121
(
6
), pp.
335
338
. 10.1061/(ASCE)0733-950X(1995)121:6(335)
2.
Neelamani
,
S.
,
Al-Salem
,
K.
, and
Taqi
,
A.
,
2017
, “
Experimental Investigation on Wave Reflection Characteristics of Slotted Vertical Barriers With an Impermeable Back Wall in Random Wave Fields
,”
J. Waterway Port Coast. Ocean Eng.
,
143
(
4
), pp.
1
10
. 10.1061/(ASCE)WW.1943-5460.0000395
3.
Premasiri
,
S.
,
1997
, “
Experimental Study of Wave Interactions With Slotted Barriers
,”
Ph.D. thesis
,
University of British Columbia
,
Vancouver, Canada
.
4.
Isaacson
,
M.
,
Premasiri
,
S.
, and
Yang
,
G.
,
1998
, “
Wave Interactions With Vertical Slotted Barrier
,”
J. Waterway Port Coast. Ocean Eng.
,
124
(
3
), pp.
118
126
. 10.1061/(ASCE)0733-950X(1998)124:3(118)
5.
Reddy
,
M.
, and
Neelamani
,
S.
,
1992
, “
Wave Transmission and Reflection Characteristics of a Partially Immersed Rigid Vertical Barrier
,”
Ocean Eng.
,
19
(
3
), pp.
313
325
. 10.1016/0029-8018(92)90032-Y
6.
Krishnakumar
,
C.
,
Sundar
,
V.
, and
Sannasiraj
,
S.
,
2009
, “
Hydrodynamic Performance of Single-and Double-Wave Screens
,”
J. Waterway Port Coast. Ocean Eng.
,
136
(
1
), pp.
59
65
. 10.1061/(ASCE)WW.1943-5460.0000025
7.
Alkhalidi
,
M.
,
Neelamani
,
S.
, and
Assad
,
A. I. A. H.
,
2015
, “
Wave Pressures and Forces on Slotted Vertical Wave Barriers
,”
Ocean Eng.
,
108
, pp.
578
583
. 10.1016/j.oceaneng.2015.08.044
8.
Ren
,
X.
, and
Ma
,
Y.
,
2015
, “
Numerical Simulations for Nonlinear Waves Interaction With Multiple Perforated Quasi-Ellipse Caissons
,”
Math. Prob. Eng.
,
2015
, p.
895673
. 10.1155/2015/895673
9.
Neelamani
,
S.
,
Taqi
,
A.
, and
Al-Salem
,
K.
,
2018
, “
Innovative Vertical Slotted Wave Barriers for Reducing Wave Reflection of Relatively Long Gravity Waves
,”
The 28th International Ocean and Polar Engineering Conference
,
Sapporo, Japan
,
June 10–15
, pp.
1251
1256
.
10.
Mackay
,
E.
,
Johanning
,
L.
,
Ning
,
D.
, and
Qiao
,
D.
,
2019
, “
Numerical and Experimental Modelling of Wave Loads on Thin Porous Sheets
,”
ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering
,
Glasgow, Scotland
,
June 9–14
http://dx.doi.org/10.1115/OMAE2019-95148.
11.
Byatt-Smith
,
J. G.
,
1971
, “
An Integral Equation for Unsteady Surface Waves and a Comment on the Boussinesq Equation
,”
J. Fluid Mech.
,
49
(
4
), pp.
625
633
. 10.1017/S0022112071002295
12.
Miles
,
J. W.
,
1977
, “
Obliquely Interacting Solitary Waves
,”
J. Fluid Mech.
,
79
(
1
), pp.
157
169
. 10.1017/S0022112077000081
13.
Miles
,
J. W.
,
1977
, “
Resonantly Interacting Solitary Waves
,”
J. Fluid Mech.
,
79
(
1
), pp.
171
179
. 10.1017/S0022112077000093
14.
Melville
,
W.
,
1980
, “
On the Mach Reflexion of a Solitary Wave
,”
J. Fluid Mech.
,
98
(
2
), pp.
285
297
. 10.1017/S0022112080000158
15.
Liu
,
P. L. -F.
, and
Al-Banaa
,
K.
,
2004
, “
Solitary Wave Runup and Force on a Vertical Barrier
,”
J. Fluid Mech.
,
505
, pp.
225
233
. 10.1017/S0022112004008547
16.
Goring
,
D.
,
1979
, “
Tsunamis—The Propagation of Long Waves on to a Shelf
,”
Ph.D. thesis
,
California Institute of Technology
,
Pasadena, CA
.
17.
Katell
,
G.
, and
Eric
,
B.
,
2002
, “
Accuracy of Solitary Wave Generation by a Piston Wave Maker.
,”
J. Hydraulic Res.
,
40
(
3
), pp.
321
331
. 10.1080/00221680209499946
18.
Malek-Mohammadi
,
S.
, and
Testik
,
F. Y.
,
2010
, “
New Methodology for Laboratory Generation of Solitary Waves
,”
J. Waterway Port Coast. Ocean Eng.
,
136
(
5
), pp.
286
294
. 10.1061/(ASCE)WW.1943-5460.0000046
19.
Francis
,
V.
,
Ramakrishnan
,
B.
,
Rudman
,
M.
, and
Valizadeh
,
A.
,
2020
, “
Generating Stable Solitary Waves With a Piston-Type Wavemaker
,”
Coast. Eng.
,
157
, p.
103633
. 10.1016/j.coastaleng.2020.103633
20.
Dean
,
R. G.
, and
Dalrymple
,
R. A.
,
1991
,
Water Wave Mechanics for Engineers and Scientists
, Vol.
2
,
World Scientific Publishing Company
,
Singapore
.
21.
Naheer
,
E.
,
1978
, “
The Damping of Solitary Waves
,”
J. Hydraulic Res.
,
16
(
3
), pp.
235
249
. 10.1080/00221687809499619
22.
Svendsen
,
I. A.
, and
Staub
,
C.
,
1981
, “
Horizontal Particle Velocities in Long Waves
,”
J. Geophys. Res. Oceans
,
86
(
C5
), pp.
4138
4148
. 10.1029/JC086iC05p04138
23.
Li
,
Y.
, and
Raichlen
,
F.
,
2003
, “
Energy Balance Model for Breaking Solitary Wave Runup
,”
J. Waterway Port Coast. Ocean Eng.
,
129
(
2
), pp.
47
59
. 10.1061/(ASCE)0733-950X(2003)129:2(47)
24.
Silva
,
R.
,
Losada
,
I.
, and
Losada
,
M.
,
2000
, “
Reflection and Transmission of Tsunami Waves by Coastal Structures
,”
Appl. Ocean Res.
,
22
(
4
), pp.
215
223
. 10.1016/S0141-1187(00)00012-2
25.
Shao
,
S.
,
2005
, “
Sph Simulation of Solitary Wave Interaction With a Curtain-Type Breakwater
,”
J. Hydraulic Res.
,
43
(
4
), pp.
366
375
. 10.1080/00221680509500132
26.
Lin
,
P.
, and
Karunarathna
,
S.
,
2007
, “
Numerical Study of Solitary Wave Interaction With Porous Breakwaters
,”
J. Waterway Port Coast. Ocean Eng.
,
133
(
5
), pp.
352
363
. 10.1061/(ASCE)0733-950X(2007)133:5(352)
27.
Han
,
S.
,
Ha
,
T.
, and
Cho
,
Y.-S.
,
2015
, “
Laboratory Experiments on Run-Up and Force of Solitary Waves
,”
J. Hydro-Environ. Res.
,
9
(
4
), pp.
582
591
. 10.1016/j.jher.2015.05.002
28.
Huang
,
Z.
, and
Yuan
,
Z.
,
2010
, “
Transmission of Solitary Waves Through Slotted Barriers: A Laboratory Study With Analysis by a Long Wave Approximation
,”
J. Hydro-Environ. Res.
,
3
(
4
), pp.
179
185
. 10.1016/j.jher.2009.10.009
29.
Grilli
,
S.
,
Gilbert
,
R.
,
Lubin
,
P.
,
Vincent
,
S.
,
Astruc
,
D.
,
Legendre
,
D.
,
Duval
,
M.
,
Kimmoun
,
O.
,
Branger
,
H.
,
Devrard
,
D.
,
Fraunié
,
P.
, and
Abadie
,
S.
,
2004
, “
Numerical Modeling and Experiments for Solitary Wave Shoaling and Breaking Over a Sloping Beach
,”
14th International Offshore and Polar Engineering Conference IGARSS, ISOPE
,
Toulon, France
,
May 23–28
, Vol.
3
.
30.
Maxworthy
,
T.
,
1976
, “
Experiments on Collisions Between Solitary Waves
,”
J. Fluid Mech.
,
76
(
1
), pp.
177
186
. 10.1017/S0022112076003194
31.
Su
,
C.
, and
Mirie
,
R. M.
,
1980
, “
On Head-On Collisions Between Two Solitary Waves
,”
J. Fluid Mech.
,
98
(
3
), pp.
509
525
. 10.1017/S0022112080000262
32.
Mirie
,
R. M.
, and
Su
,
C.
,
1982
, “
Collisions Between Two Solitary Waves. Part 2. A Numerical Study
,”
J. Fluid Mech.
,
115
, pp.
475
492
. 10.1017/S002211208200086X
33.
Cooker
,
M.
,
Weidman
,
P.
, and
Bale
,
D.
,
1997
, “
Reflection of a High-Amplitude Solitary Wave at a Vertical Wall
,”
J. Fluid Mech.
,
342
, pp.
141
158
. 10.1017/S002211209700551X
34.
Oikawa
,
M.
, and
Yajima
,
N.
,
1973
, “
Interactions of Solitary Waves—A Perturbation Approach to Nonlinear Systems
,”
J. Phys. Soc. Jpn.
,
34
(
4
), pp.
1093
1099
. 10.1143/JPSJ.34.1093
35.
Fenton
,
J.
, and
Rienecker
,
M.
,
1982
, “
A Fourier Method for Solving Nonlinear Water-Wave Problems: Application to Solitary-Wave Interactions
,”
J. Fluid Mech.
,
118
, pp.
411
443
. 10.1017/S0022112082001141
36.
Iwasa
,
Y.
,
1959
, “
Attenuation of Solitary Waves on a Smooth Bed
,”
J. Hydraulics Div.
,
83
(
3
), pp.
1
15
.
You do not currently have access to this content.