This study assesses the serviceability and fatigue limit states of the offshore wind turbine (OWT) founded in clay incorporating the impact of climate change. Two different offshore locations at east and west coasts in India are chosen. The ensemble of future time series of wind speed, wave height, and period is forecasted using statistical downscaling model (SDSM) at the regional level using the general circulation model (GCM) corresponding to the A1B, A2, and B1 emission scenarios. The downscaling model is calibrated by comparing simulations driven by the National Centers for Environmental Prediction (NCEP) high-resolution data and station data. Responses of OWT are obtained from dynamic analysis in a time domain using finite element (FE). The tower and monopile are modeled as Euler–Bernoulli beam, and soil resistance is modeled as American Petroleum Institute (API)-based p–y springs. The study shows future wind and wave loads are site specific, and it increases in the west coast and decreases in the east coast of India due to climate change. The simulation shows a substantial increase in future wind energy production at west coast compared to that of the east coast; however, safety margin considering serviceability and fatigue life decreases which requires modification in the design.

References

1.
DNV
,
2010
, “
Design of Offshore Wind Turbine Structures
,” Det Norske Veritas, Fredericia, Denmark, Standard No.
DNV-OS-J101
.https://rules.dnvgl.com/docs/pdf/DNV/codes/docs/2010-10/Os-J101.pdf
2.
IPCC
,
2007
, “
Contribution of Working Group I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change
,” Intergovernmental Panel on Climate Change, Geneva, Switzerland, p.
104
, Report No.
AR4
.https://www.ipcc.ch/publications_and_data/publications_ipcc_fourth_assessment_report_synthesis_report.htm
3.
Lizuma
,
L.
,
Avotniece
,
Z.
,
Rupainis
,
S.
, and
Teilans
,
A.
,
2013
, “
Assessment of the Present and Future Offshore Wind Power Potential: A Case Study in a Target Territory of the Baltic Sea Near the Latvian Coast
,”
Sci. World J.
,
2013
, p.
126428
.http://dx.doi.org/10.1155/2013/126428
4.
Kulkarni
,
S.
,
Deo
,
M. C.
, and
Ghosh
,
S.
,
2014
, “
Changes in the Design and Operational Wind Due to Climate Change at the Indian Offshore Sites
,”
Mar. Struct.
,
37
, pp.
33
53
.
5.
Deepthi
,
R.
, and
Deo
,
M. C.
,
2010
, “
Effect of Climate Change on Design Wind at the Indian Offshore Locations
,”
Ocean Eng.
,
37
(11–12), pp.
1061
1069
.
6.
Radhika
,
S.
,
Deo
,
M. C.
, and
Latha
,
G.
,
2013
, “
Evaluation of the Wave Height Used in the Design of Offshore Structures Considering the Effects of Climate Change
,”
J. Eng. Marit. Environ.
,
227
(
3
), pp.
233
242
.https://doi.org/10.1177/1475090212443177
7.
Grabemann
,
I.
, and
Weisse
,
R.
,
2008
, “
Climate Change Impact on Extreme Wave Conditions in the North Sea: An Ensemble Study
,”
Ocean Dyn.
,
58
(3–4), pp.
199
212
.
8.
DHI
,
2012
, “
Marine Climate Change Guidelines
,”
Danish Hydraulic Institute
, Hørsholm, Denmark.https://www.dhigroup.com/upload/publications/scribd/99998015-Marine-Climate-Change-Guidelines-DHI.pdf
9.
Pryor
,
S.
,
Barthelmie
,
R.
,
Clausen
,
N.
,
Drews
,
M.
,
MacKellar
,
N.
, and
Kjellstrom
,
E.
,
2012
, “
Analyses of Possible Changes in Intense and Extreme Wind Speeds Over Northern Europe Under Climate Change Scenarios
,”
Clim. Dyn.
,
38
(1–2), pp.
189
208
.
10.
Sailor
,
D. J.
,
Smith
,
M.
, and
Hart
,
M.
,
2008
, “
Climate Change Implications for Wind Power Resources in the Northwest United States
,”
Renewable Energy
,
33
(
11
), pp.
2393
2406
.
11.
Kapsali
,
M.
, and
Kaldellis
,
J. K.
,
2012
, “
Offshore Wind Power Basics
,”
Comprehensive Renewable Energy
, Vol.
2
, Technological Educational Institute of Piraeus, Egaleo, Greece, pp.
431
468
.
12.
GWEC
,
2012
, “
Indian Wind Energy Outlook
,”
Global Wind Energy Council
, Brussels, Belgium.http://www.gwec.net/wp-content/uploads/2012/11/India-Wind-Energy-Outlook-2012.pdf
13.
DNV
,
2010
, “
Environmental Conditions and Environmental Loads
,” Det Norske Veritas, Fredericia, Denmark, Standard No.
DNV-RP-C205
.https://rules.dnvgl.com/docs/pdf/dnv/codes/docs/2010-10/rp-c205.pdf
14.
Wilby
,
R. L.
,
Hay
,
L. E.
, and
Leavesley
,
G. H.
,
1999
, “
A Comparison of Downscaled and Raw GCM Output: Implications for Climate Change Scenarios in the San Juan River Basin, Colorado
,”
J. Hydrol.
,
225
(1–2), pp.
67
91
.
15.
Wilby
,
R. L.
,
Charles
,
S. P.
,
Zorita
,
E.
,
Timbal
,
B.
,
Whetton
,
P.
, and
Mearns
,
L. O.
,
2004
, “
Guidelines for Use of Climate Scenarios Developed From Statistical Downscaling Methods
,” IPCC Task Group on Data and Scenario Support for Impact and Climate Analysis (TGICA), Intergovernmental Panel on Climate Change, Geneva, Switzerland, accessed Mar. 21, 2013, http://www.ipcc-data.org/guidelines/dgm_no2_v1_09_2004.pdf
16.
Wilby
,
R. L.
,
Dawson
,
C. W.
, and
Barrow
,
E. M.
,
2002
, “
SDSM—A Decision Support Tool for the Assessment of Regional Climate Change Impacts
,”
Environ. Modell. Software
,
17
(2), pp.
147
159
.
17.
Kulkarni
,
S.
,
Deo
,
M. C.
, and
Ghosh
,
S.
,
2013
, “
Impact of Climate Change on Local Wind Conditions
,” International Conference on Hydraulics and Water Resources (
HYDRO
), Chennai, India, Dec. 4–6.
18.
Jara
,
F. A. V.
,
2006
, “
Model Testing of Foundations for Offshore Wind Turbines
,”
Ph.D. thesis
, University of Oxford, Oxford, UK.https://ora.ox.ac.uk/objects/uuid:438cfe69-c8d4-4630-ab0b-482da5ea2839
19.
Lombardi
,
D.
,
2010
, “
Dynamics of Offshore Wind Turbines
,”
M.Sc. thesis
, University of Bristol, Bristol, UK.https://www.researchgate.net/publication/262032408_Dynamics_of_offshore_wind_turbines
20.
Adam
,
F.
,
Steinke
,
C.
,
Dahlhaus
,
F.
, and
Grobmann
,
J.
,
2013
, “
GICON®-TLP for Wind Turbines—Validation of Calculated Results
,”
23rd International Offshore and Polar Engineering Conference
, Anchorage, AK, June 30–July 5,
SPE
Paper No. ISOPE-I-13-093.https://www.onepetro.org/conference-paper/ISOPE-I-13-093
21.
Thiruvengadathan
,
A.
,
1984
, “
Waves in the Arabian Sea and Bay of Bengal During the Monsoon Season
,”
Mausam
,
35
, pp.
103
106
.
22.
Arany
,
L.
,
Bhattacharya
,
S.
,
Macdonald
,
J.
, and
Hogan
,
S. J.
,
2014
, “
Simplified Critical Mudline Bending Moment Spectra of Offshore Wind Turbine Support Structures
,”
Wind Energy
,
18
(
12
), pp.
2171
2197
.
23.
Meehl
,
G. A.
,
Stocker
,
T. F.
,
Collins
,
W. D.
,
Friedlingstein
,
P.
,
Gaye
,
A. T.
,
Gregory
,
J. M.
,
Kitoh
,
A.
,
Knutti
,
R.
,
Murphy
,
J. M.
,
Noda
,
A.
,
Raper
,
S. C. B.
,
Watterson
,
I. G.
,
Weaver
,
A. J.
, and
Zhao
,
Z. C.
,
2007
, “
Global Climate Projections
,”
Climate Change 2007: The Physical Science Basis
(Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change),
S.
Solomon
,
D.
Qin
,
M.
Manning
,
Z.
Chen
,
M.
Marquis
,
K. B.
Averyt
,
M.
Tignor
, and
H. L.
Miller
, eds.,
Cambridge University Press
,
Cambridge, UK
, pp.
747
846
.
24.
Adhikari
,
S.
, and
Bhattacharya
,
S.
,
2012
, “
Dynamic Analysis of Wind Turbine Towers on Flexible Foundations
,”
Shock Vib.
,
19
(
1
), pp.
37
56
.
25.
API
,
2011
, “
Petroleum and Natural Gas Industries-Specific Requirements for Offshore Structures, Part 4—Geotechnical and Foundation Design Considerations
,” American Petroleum Institute, Washington, DC, Standard No. API RP 2MOP.
26.
Bisoi
,
S.
, and
Haldar
,
S.
,
2014
, “
Dynamic Analysis of Offshore Wind Turbine in Clay Considering Soil-Monopile-Tower Interaction
,”
Soil Dyn. Earthquake Eng.
,
63
, pp.
19
35
.
27.
Matlock
,
H.
,
1970
, “
Correlation for Design of Laterally Loaded Piles in Soft Clay
,”
Offshore Technology Conference
, Dallas, TX, Apr. 22–24,
SPE
Paper No. OTC-1204-MS.https://doi.org/10.4043/1204-MS
28.
GL
,
2005
, “
Guideline for the Certification of Offshore Wind Turbines
,”
Germanischer Lloyd
, Hamburg, Germany.http://www.cwpc.cn/cwpp/files/2913/9822/4215/Technology_Offshore_Guideline_for_the_Certification_of_Offshore_Wind_Turbines.pdf
29.
Kuhn
,
M.
,
2001
, “
Dynamics and Design Optimisation of Offshore Wind Energy Conversion Systems
,”
Ph.D. thesis
, Delft University of Technology, Delft, The Netherlands.https://repository.tudelft.nl/islandora/object/uuid:adc3b032-3dde-4e32-84c3-7b8e181e5263?collection=research
30.
DNV
,
2002
,
Guidelines for Design of Wind Turbines
, Det Norske Veritas, Fredericia, Denmark.
31.
COMSOL
,
2013
, “
COMSOL Multiphysics User Guide, Version 4.3b Edition
,” COMSOL AB, Palo Alto, CA.
32.
DNV
,
2010
, “
Fatigue Design of Offshore Steel Structures
,” Det Norske Veritas, Fredericia, Denmark, Standard No.
DNV-RP-C203
.https://rules.dnvgl.com/docs/pdf/DNV/codes/docs/2010-04/RP-C203.pdf
33.
4C Offshore
,
2013
, “
Offshore Turbine Database
,” Orbis Energy Centre, Suffolk, UK, accessed July 24, 2017, www.4coffshore.com/windfarms/turbines.aspx
You do not currently have access to this content.