Finite element simulations of rubber protective coatings with different structures under two dynamic loading cases were performed. They were monolithic coating and honeycomb structures with three different cell topologies (hexachiral honeycomb, reentrant honeycomb, and circular honeycomb). The two loading cases were a dynamic compression load and water blast shock wave. The dynamic mechanical responses of those coatings under these two loading cases were compared. Finite element simulations have been undertaken using the ABAQUS/Explicit software package to provide insights into the coating's working mechanism and the relation between compression behavior and water blast shock resistance. The rubber materials were modeled as hyperelastic materials. The reaction force was selected as the major comparative criterion. It is concluded that when under dynamic compressive load, the cell topology played an important role at high speed, and when under underwater explosion, the honeycomb coatings can improve the shock resistance significantly at the initial stage. For honeycomb coatings with a given relative density, although structural absorbed energy has a significant contribution in the shock resistance, soft coating can significantly reduce the total incident impulse at the initial fluid-structure interaction stage. Further, a smaller fraction of incident impulse is imparted to the honeycomb coating with lower compressive strength.

References

1.
Scavuzzo
,
R. J.
, and
Pusey
H. C.
,
2000
, “
Naval Shock Analysis and Design
,”
Shock and Vibration Information Analysis Center
,
Allen and Hamilton, Inc.
,
Falls Church, VA
.
2.
Chen
,
Y.
,
Tong
,
Z. P.
,
Hua
,
H. X.
,
Wang
,
Y.
, and
Gou
,
H. Y.
,
2009
, “
Experimental Investigation on the Dynamic Response of Scaled Ship Model With Rubber Sandwich Coatings Subjected to Underwater Explosion
,”
Int. J. Impact. Eng.
,
36
(
2
), pp.
318
328
.10.1016/j.ijimpeng.2007.12.015
3.
Chen
,
Y.
,
Zhang
,
Z. Y.
,
Wang
,
Y.
, and
Hua
,
H. X.
,
2009
, “
Crush Dynamics of Square Honeycomb Thin Rubber Wall
,”
Thin-Walled Struct.
,
47
(
12
), pp.
1447
1456
.10.1016/j.tws.2009.07.007
4.
Xue
,
Z. Y.
, and
Hutchinson
,
J. W.
,
2004
, “
A Comparative Study of Impulse-Resistant Metal Sandwich Plates
,”
Int. J. Impact. Eng.
,
30
(
10
), pp.
1283
1305
.10.1016/j.ijimpeng.2003.08.007
5.
McShane
,
G. J.
,
Radford
,
D. D.
,
Deshpande
,
V. S.
, and
Fleck
,
N. A.
,
2006
, “
The Response of Clamped Sandwich Plates With Lattice Cores Subjected to Shock Loading
,”
Eur. J. Mech.: A/Solids
,
25
(
2
), pp.
215
229
.10.1016/j.euromechsol.2005.08.001
6.
Theobald
,
M. D.
,
Langdon
,
G. S.
,
Nurick
,
G. N.
,
Pillay
,
S.
,
Heyns
,
A.
, and
Merrett
,
R. P.
,
2010
, “
Large Inelastic Response of Unbonded Metallic Foam and Honeycomb Core Sandwich Panels to Blast Loading
,”
Compos. Struct.
,
92
(
10
), pp.
2465
2475
.10.1016/j.compstruct.2010.03.002
7.
Yungwirth
,
C. J.
,
Radford
,
D. D.
,
Aronson
,
M.
, and
Wadley
,
H. N. G.
,
2008
, “
Experiment Assessment of the Ballistic Response of Composite Pyramidal Lattice Truss Structures
,”
Compos. Part B: Eng.
,
39
(
3
), pp.
556
569
.10.1016/j.compositesb.2007.02.029
8.
Wang
,
E.
,
Gardner
,
N.
, and
Shukla
,
A.
,
2009
, “
The Blast Resistance of Sandwich Composites With Stepwise Graded Cores
,”
Int. J. Solids Struct.
,
46
(
18
), pp.
3492
3502
.10.1016/j.ijsolstr.2009.06.004
9.
Fleck
,
N. A.
, and
Deshpande
,
V. S.
,
2004
, “
The Resistance of Clamped Sandwich Beams to Shock Loading
,”
J. Appl. Mech.
,
71
(
3
), pp.
386
401
.10.1115/1.1629109
10.
Xue
,
Z. Y.
, and
Hutchinson
,
J. W.
,
2003
, “
Preliminary Assessment of Sandwich Plates Subject to Blast Loads
,”
Int. J. Mech. Sci.
,
45
(
4
), pp.
687
705
.10.1016/S0020-7403(03)00108-5
11.
Mäkinen
,
K.
,
1999
, “
The Transverse Response of Sandwich Panels to an Underwater Shock Wave
,”
J. Fluids Struct.
,
13
(
5
), pp.
631
646
.10.1006/jfls.1999.0222
12.
Chen
,
Y.
,
Zhang
,
Z. Y.
,
Wang
,
Y.
,
Hua
,
H. X.
, and
Gou
,
H. Y.
,
2009
, “
Attenuating Performance of a Polymer Layer Coated Onto Floating Structures Subjected to Water Blasts
,”
Eur. J. Mech.: A/Solids
,
28
(
3
), pp.
591
598
.10.1016/j.euromechsol.2008.10.003
13.
Deshpande
,
V. S.
, and
Fleck
,
N. A.
,
2005
, “
One-Dimensional Response of Sandwich Plates to Underwater Shock Loading
,”
J. Mech. Phys. Solids
,
53
(
11
), pp.
2347
2383
.10.1016/j.jmps.2005.06.006
14.
Liang.
Y. M.
,
Spuskanyuk
,
A. V.
, and
Flores
,
S. E.
,
2007
, “
The Response of Metallic Sandwich Panels to Water Blast
,”
J. Appl. Mech.
,
74
(
1
), pp.
81
99
.10.1115/1.2178837
15.
Tilbrook
,
M. T.
,
Deshpande
,
V. S.
, and
Fleck
,
N. A.
,
2009
, “
Underwater Blast Loading of Sandwich Beams: Regimes of Behaviour
,”
Int. J. Solids Struct.
,
46
(
17
), pp.
3209
3221
.10.1016/j.ijsolstr.2009.04.012
16.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
2001
,
Cellular Solids: Structures and Properties
, 2nd ed.,
Cambridge University Press
,
Cambridge, UK
.
17.
Xue
,
Z. Y.
, and
Hutchinson
,
J. W.
,
2006
, “
Crush Dynamics of Square Honeycomb Sandwich Cores
,”
Int. J. Numer. Meth. Eng.
,
65
(
13
), pp.
2221
2245
.10.1002/nme.1535
18.
Zou
,
Z.
,
Reid
,
S. R.
,
Tan
,
P. J.
,
Li
,
S.
, and
Harrigan
,
J. J.
,
2009
, “
Dynamic Crushing of Honeycombs and Features of Shock Fronts
,”
Int. J. Impact. Eng.
,
36
(
1
), pp.
165
176
.10.1016/j.ijimpeng.2007.11.008
19.
Hu
,
L. L.
, and
Yu
,
T. X.
,
2010
, “
Dynamic Crushing Strength of Hexagonal Honeycombs
,”
Int. J. Impact. Eng.
,
37
(
5
), pp.
467
474
.10.1016/j.ijimpeng.2009.12.001
20.
Hibbitt
,
Karlsson
, and
Sorensen, Inc.
,
2001
,
ABAQUS User's Manual, Version 6.0
,
Pennsylvania State University
,
State College, PA
.
21.
Chen
,
Y.
,
2008
, “
Study on the Shock Behavior and FSI Mechanism of the Hyperelastic Sandwich Coating Subjected to Water Blast
,” Postdoctoral thesis, Shanghai Jiao Tong University, Shanghai, China.
22.
Cole
,
R. H.
,
1948
,
Underwater Explosions
,
Princeton University
,
Princeton, NJ
.
You do not currently have access to this content.