Increasing numbers of floating offshore wind turbines (FOWTs) are planned in the coming years due to their high potential in the massive generation of clean energy from ocean wind. In the present study, a numerical prediction tool has been developed for the fully coupled dynamic analysis of an FOWT system in the time domain including aero-loading, tower/blade elasticity, blade-rotor dynamics and control, mooring dynamics, and platform motions so that the influence of aero-elastic-control dynamics on the hull-mooring performance and vice versa can be assessed. The Hywind spar design with a 5 MW National Renewable Energy Laboratory (NREL) turbine is selected as an example and two different collinear wind-wave-current environmental conditions, maximum operational and survival conditions, are applied for this study. The maximum operational condition means the maximum environmental condition with normal blade-turbine operation and the survival condition represents the extreme situation without any blade-turbine operation. Through this study, it is seen that the ultimate-loading environments for different structural components of the FOWT can be different. The developed technology and numerical tool are readily applicable to the design of any type of future FOWTs in any combinations of irregular waves, dynamic winds, and steady currents.

References

1.
Roddier
,
D.
,
Peiffer
,
A.
,
Weinstein
,
J.
, and
Aubault
,
A.
,
2011
, “
A Generic 5 MW Windfloat for Numerical Tool Validation and Comparison Against a Generic 5 MW Spar
,”
Proceedings of the ASME 2011 30th International Conference on Ocean Offshore and Arctic Engineering
,
Rotterdam
, The Netherlands.
2.
Henderson
,
A. R.
,
Leutz
,
R.
, and
Fujii
,
T.
,
2002
, “
Potential for Floating Offshore Wind Energy in Japanese Waters
,”
Proceedings of the 12th International Offshore and Polar Engineering Conference
,
Kitakyushu, Japan
.
3.
Henderson
,
A. R.
,
Zaaijer
,
M.
,
Bulder
,
B.
,
Pierik
,
J.
,
Huijsmans
,
R.
,
Van Hees
,
M.
,
Snijders
,
E.
,
Wijnants
,
G. H.
, and
Wolf
,
M. J.
,
2004
, “
Floating Windfarms for Shallow Offshore Sites
,”
Proceedings of the 14th International Offshore and Polar Engineering Conference
,
Toulon, France
.
4.
Musial
,
W. D.
,
Butterfield
,
S.
, and
Boone
,
A.
,
2004
, “
Feasibility of Floating Platform Systems for Wind Turbines
,”
Proceedings of the 42nd AIAA Aerospace Sciences Meeting and Exhibit
,
Reno, NV
.
5.
Tong
,
K. C.
,
1998
, “
Technical and Economic Aspects of a Floating Offshore Wind Farm
,”
J. Wind Eng. Ind. Aerodyn.
,
74
(
6
), pp.
399
410
.10.1016/S0167-6105(98)00036-1
6.
Wayman
,
E. N.
,
Sclavounos
,
P. D.
,
Butterfield
,
S.
,
Jonkman
,
J.
, and
Musial
,
W.
,
2006
, “
Coupled Dynamic Modeling of Floating Wind Turbine Systems
,”
Proceedings of the Offshore Technology Conference
,
Houston, TX
7.
Robertson
,
A.
, and
Jonkman
,
J.
,
2011
, “
Loads Analysis of Several Offshore Floating Wind Turbine Concepts
,”
Proceedings of the 21st International Offshore and Polar Engineering Conference
,
Maui, HI
.
8.
Nielsen
,
F. G.
,
Hanson
,
T. D.
, and
Skaare
,
B.
,
2006
, “
Integrated Dynamic Analysis of Floating Offshore Wind Turbines
,”
Proceedings of the 25th International Conference on Offshore Mechanics and Arctic Engineering
,
Hamburg, Germany
.
9.
Bae
,
Y. H.
,
Kim
,
M. H.
,
Im
,
S. W.
, and
Chang
,
I. H.
,
2011
, “
Aero-Elastic-Control-Floater-Mooring Coupled Dynamic Analysis of Floating Offshore Wind Turbines
,”
Proceedings of the 21st International Offshore and Polar Engineering Conference
,
Maui, HI
.
10.
Karimirad
,
M.
, and
Moan
,
T.
,
2010
, “
Extreme Structural Dynamic Response of a Spar Type Wind Turbine
,”
Proceedings of the ASME 2010 29th International Conference on Ocean Offshore and Arctic Engineering
,
Shanghai, China
.
11.
Jonkman
,
J. M.
, and
Buhl
,
M. L.
, Jr.
,
2004
,
Fast User's Guide
,
National Renewable Energy Laboratory
,
Golden, CO
.
12.
Kim
,
M. H.
,
Ran
,
Z.
,
Zheng
,
W.
,
Bhat
,
S.
, and
Beynet
,
P.
,
1999
, “
Hull/Mooring Coupled Dynamic Analysis of a Truss Spar in Time Domain
,”
Proceedings of the 9th International Offshore and Polar Engineering Conference
,
Brest, France
.
13.
Ran
,
Z.
,
Kim
,
M. H.
, and
Zheng
,
W.
,
1999
, “
Coupled Dynamic Analysis of a Moored Spar in Random Waves and Currents (Time-Domain Versus Frequency-Domain Analysis)
,”
ASME J. Offshore Mech. Arct. Eng.
,
121
(
3
), pp.
194
200
.10.1115/1.2829565
14.
Tahar
,
A.
, and
Kim
,
M. H.
,
2003
, “
Hull/Mooring/Riser Coupled Dynamic Analysis and Sensitivity Study of a Tanker-Based FPSO
,”
J. Appl. Ocean Res.
,
25
(
6
), pp.
367
382
.10.1016/j.apor.2003.02.001
15.
Yang
,
C. K.
, and
Kim
,
M. H.
,
2010
, “
Transient Effects of Tendon Disconnection of a TLP by Hull-Tendon-Riser Coupled Dynamic Analysis
,”
J. Ocean Eng.
,
37
(
8-9
), pp.
667
677
.10.1016/j.oceaneng.2010.01.005
16.
Bae
,
Y. H.
, and
Kim
,
M. H.
,
2011
, “
Rotor-Floater-Mooring Coupled Dynamic Analysis of Mono-Column-TLP-Type FOWT (Floating Offshore Wind Turbine)
,”
Ocean Syst.Eng.
,
1
(
1
), pp.
95
111
.10.12989/ose.2011.1.1.095
17.
Bae
,
Y. H.
,
Kim
,
M. H.
,
Yu
,
Q.
, and
Heo
,
J. K.
,
2012
, “
Aero-Elastic-Floater-Mooring Coupled Dynamic Analysis of FOWT in Maximum Operational and Survival Conditions
,”
Proceedings of the 31st ASME International Conference on Ocean Offshore and Arctic Engineering
,
Rio de Janeiro, Brazil
.
18.
Lee
,
C.
,
Newman
,
J.
,
Kim
,
M.
, and
Yue
,
D.
,
1991
, “
The Computation of Second-Order Wave Loads
,”
Proceedings of the 10th International Conference on Offshore Mechanics and Arctic Engineering
,
Stavanger, Norway
.
19.
Kim
,
M. H.
,
Tahar
,
A.
, and
Kim
,
Y. B.
,
2001
, “
Variability of TLP Motion Analysis Against Various Design Methodologies/Parameters
,”
Proceedings of the 11th International Offshore and Polar Engineering Conference
, Vol.
III
,
Stavanger, Norway
.
20.
Bae
,
Y. H.
,
Kim
,
M. H.
,
Yu
,
Q.
, and
Kim
,
K.
,
2011
, “
Influence of Control Strategy to FOWT Hull Motions by Aero-Elastic-Control-Floater-Mooring Coupled Dynamic Analysis
,”
Proceedings of the 21st International Offshore and Polar Engineering Conference
,
Maui, HI
.
21.
Jonkman
,
J. M.
,
2008
, “
Influence of Control on the Pitch Damping of a Floating Wind Turbine
,”
Proceedings of the ASME Wind Energy Symposium
,
Reno NV
.
22.
Kim
,
M. H.
, and
Yue
,
D. K. P.
,
1991
, “
Sum-and Difference-Frequency Wave Loads on a Body in Unidirectional Gaussian Seas
,”
J. Ship Res.
,
35
(
2
), pp.
127
140
.
23.
Goupee
,
A. J.
,
Koo
,
B. J.
,
Kimball
,
R. W.
,
Lambrakos
,
K. F.
, and
Dagher
,
H. J.
,
2012
, “
Experimental Comparison of Three Floating Wind Turbine Concepts
,”
Proceedings of the 31st ASME International Conference on Ocean Offshore and Arctic Engineering
,
Rio de Janeiro, Brazil
.
You do not currently have access to this content.